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FOREWARD

The Cracow School on Cosmology was held in JodXowy Dwdér and it
was devoted to discussions of physical processes playing'an important
role in development and revealing the structure of universe. Methods
used to siudy distribution of galaxXies were also presented. I regret
but I failed to persuside Drs. M. Kalinkov and A. Kruszewski to write
up their lectures.

The School was sponsored by Committee of Physics of the Polish
Academy of Sciences, Jagiellonian University and Polish Astronomical
Society. I would like to thank all those Institutions for their help.

I am deeply grateful to all lecturers and participants for cre-
ating a very good atmosphere and to Drs. P. PFlin, Z. Klimek and L.Soko-
towski for organizing the School.

I would like to dedicate the Proceedings to the memory of Dr.
Z. Klimek who tragically died a tew days before beginning of the
School.

M., Demiafigki
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THE MATHEMATICS OF ANISOTROPIC SPATIALLY-HOMOGENEOUS
COSMOLOGIES

Malcolm MacCallum
Department of Applied Mathematics, Queen Mary College, London

1e Introduction
1e1. Motivation

General-relativistic cosmology was for many years concerned al-
most entirely with the simplest possible models. These are the models
which are both isotropic, i.e. in which all spatial directions are e~
quivalent, and spatially-homogeneous, i.e. 2ll points in space at a
given time are equivalent. As we shall see later (Section 3.3), the
condition of isotropy at every point leads uniguely to a certain metric
form, a theorem due originally to Robertson and Walker. This form con-
tains a function R(t) to be determined from Einstein’s equations, and
the first to do so, for dust, was Friedman. I shall therefore call
the isotropic models Friedman-Robertson-Walker (FRW) models.
Until relatively recently, cosmological debate centred on com
raring the FRW models with Robertson-Walker metrics of other gravita-
tional theories. Strictly, this began with the comparison between Eine
stein’s static universe, a solution of general relativity with a cos~
mological constant A , and the expanding solutions, the first of which
was de Sitter’s (also with cosmological constant) but later those of
Friedman (with A = 0). Hubble s law, relating the redshifts and mag-
nitudes of galaxies, first published in 1929, gave the advantage to ex-
panding models, but unfortunately led, in the FRW wodels, to an age of
the universe much shorter than the known age of the Earth. Various
regolutions of this paradox, the most famous being "steady-state" the-
ory, were attempted, as described, for example, by Bondi E9ﬂ +« These
controversies were resolved by
1) the revisions of the distance scale, leading to a much smaller Hub-
ble constant and longer age for the universe,

2) the radio source counts, demonstrating that the universe really has
evolved,

3) the discovery, in 1965, of the microwave background radiation, which
gave powerful support to the hypothesls of an initial "big-bang"
guch as is found in FRW models.



The FRW models appear to fit the broad features of the present=-
day universe very wWell. Moreover, the advances in experimental test-
ing of gravity in the last ten years, including the careful study of
previously unconsidered effects by Thorne, Will, Ni, Nordvedt and oth~
ers (see the reviews [94, 95] by Will), have led to a situation where
general relativity seems confirmed as the most aegthetically pleasing
theory fitting the known experimental facts. In this situation, the
attention of cosmologists turned, in the 1960s to some new guestions.

The point of these qQuestions is that general relativity does not
give a unigue prediction for the universe. The governing eguations
mugt be supplemented by initial conditions, boundary conditions, sym-
metry conditions, and other restrictions in oxder to yleld definite
golutions, and there are an infinity of general-relativistic cosmo-
logies. PFor various reasons, which I shall try to outline, attempts
have been made to compare FRW models with these other, less symmetric~
al, models. The easiest wodels to consider are those which share with
the PRW models the property of spatial-homogeneltys These are the mod-
els which form the subject of this course, and as those atiending will
discover there is a formidable body of literature about these models.
It has been reviewed before, e.ge [96, 11, 97, 98], of course.

The philosophical reasonsg for considering non~-FRW models wexre
set out by Misner [99]. They are essentially that the Friedman models
offer no explanation for the observed symmetry, and in particular that
regions now observable (by the microwave radiation) could not have
been in causal contact at time of emission, so that the symmetry real-
ly seems to be imposed, rather than natural. Misner suggested a pro-
gramme of "chaotic cosmology", to test the hypothesis that arbitrary
initial conditions would, by the operation of various physical pro-
cesses, always reduce to the present-day observed universe.

A second aspect is that although FRW models start from a big-
bang, thus satisfying the singularity theorems [45] which strongly in-
dicate such an origin for our universe, they do not exhibit the most
general types of singularity [ﬁOQ]. In particular, small perturbations
of PRW models exist, i.ec. small at some ftime t after the big~bang,
such that they grow as the singularity is approached. The singularity
structure is therefore unstable and the FRW initial conditions are fax
from general, being, in some i1l defined sense, isolated in the space
of solutions.

A further impetus to study of non-FRW models came from the fact
that small perfurbations caused by random statistical fluctuations in
PRW models do not appear to grow fast enough for this to provide a sat-



igfactory account of galaxy formation.

It may seem strange, however, to pass from the FPRW models to
spatially-homogeneous anisotropic models. We can directly test, in s
number of ways, the isotropy of the universe about us. Whether or not
t0 abandon faith in isotropy is really an experimental question. How~
ever, it is almost impossible to test homogeneity, because We see dis~-
tant regions as they wexre a long time ago, and In order to compare
them with the present-day we must find the appropriate evolution to
obtain the present-day parameters of those distant regions. This may
well lead us into a circular argument.

Belief in homogeneity is really the outcome of a long series of
reverses for a geocentric point of view. Briefly these were a) Coper~
nicus’ 1543 proposal that the Barth is not the center of the universe,
b) Shapley’s 1918 discovery that the Sun is not at the center of our
Galaxy, c) Hubble's 1924 confirmation that the "island nebulae" were
other galaxies and 4) Baade s 1952 revision of the distance scale show-
ing that ours is not the largest galaxy in the universe. The conse~
quence is a widely~held belief, known as the "Copermican Principle",
that the Earth is in no specisal place in the universe. Thus If we see
i1sotropy, everybody must see isotropy, or if we see a linear Hubble
law, 50 must everybody., Either of these situations leads to homoge-
nelty in space.

The only attempts at direct testing of homogeneity use the dis-
tribution of galaxies, and since the galaxies appear to be clustered
on scales which may be very large indeed, the outcome of these tests
is disputed [101 - 104].

The principal advantage of the spatially~homogeneous models is
that the physical variables depend only on time. Thus Einstein’s equa~
tions, and the other governing equations, reduce to ordinary differ-
entiél equations. My own view, howevexr, i1s that the real resolution
of difficulties of cosmology may lie with the consideration of inhomo~
Zeneous models.

Let me pass on to review briefly the question of the abandonment
of isotropy. The eaxly reasons for this, such as apparently low abun~
dances of primordial helium in some stars, are no longer believed, tut
there are other indications which also must be considered. The various
tests are

1e The distribution of galaxies, Some authors, especially gde
Vaucouleurs, believe this to be anisotxopic.

2. The Hubble constant may contain an anisotropy associated with
the Virgo supercluster, if that exists [105]. Rubin et al. [106] have



found anisotropies in the redshifts of Scl galaxies consistent with a
velocity of 454 + 125 km/sec in the direction 1 = 163°, b = - 11°, but
Schechter [107] has shown that the conclusion depends critically on
the method of data analysis. Prom an independent sample he obtained
a velocity 346 + 76 km/sec in the direction of 1 = 72°, b = 28°. An-
other group finds anisotropies associated with the passage of light
through clusters of galaxies [108].

3+ Numerous studies have establisghed that, contrary fo earlier
claims, there is no detectable positive anisotropy in the distribution
or properties of radlo sources {see e.g. [109]).

4. The cosmic X-ray background is isotropic to less than 5% [110].

5. The cosmic microwave background gives the most accurate tests
of isotropy. Until last year no indication of anisotropy existed {see
eege [11]) tut now [112] Smoot et al. have found a velocity 603+60
km/sec towards 1 = 261°, b = 33°. It should be noted that this is not
compatible with the present Hubble law measurements.

6+ A cosmic magnetic field, which would break isotropy, has been
proposed, but its existance is very doubtful. Tests are difficult be-
cause of the masking of effects by fields in our Galaxy and in the
sources [113, 114]. If it exists, it could be related [115] to the
various claims of anisotropy in orientation of galsxies and radio
sources, {316 - 119] though these have been themselves firmly estab-
11shed [118] except perhaps Within small regions [118 - 123].
There is thus no strong case for anisotropic models, but some of the
data, if confirmed, could provide such evidence.

1e2+ Aim of the following chapters

I was asked to talk about the classification and evolution of
the models to be comnsidered, but some of the other speakers will be
concerned with certain of the more physical aspects. In particular
Dr. Caderni will talk about viscous processes and Profe. Zeldovich about
quantum effects. Dr. Partridge’s lectures contain a survey of the re-
cent data on the microwave background, while the galaxy distribution,
mentioned abvove, is covered by Dr. Dautcourt.

T have therefore interpreted my task as that of providing the
pure mathematical context within which the physics can be set. T do
not aim to deal at all with the thermodynamic or kinetic theory aspects
of the models, the calculation of the effects of dissipative processes,
the introduction of quantum fields and particle creation, the conclu-
sions to be drawn concerning isotropy from the element abundances and



microwave background, or any of the other exotic and exciting physics
whose characteristics can be discussed in the models. (I may break
these regtrictions by giving a brief personal view at the end of my
course.) Ingtead I shall focus on what I feel to be the equally ex-
citing, if not exotic, mathematics reguired to set up the metrics, to
elucidate the behaviour of the field equations and their principal
characteristics, and to show how the geometry of the models can itself
have dynamical importance, and impose restrictions on the matter dy-
namics. Chapter 2 of these notes is therefore devoted an introduction
to symmetry groups of metrics and Chapter 3 to the construction of the
metrics we wish to consider, without the use of Einstein’s equations.

The Einstein equations are computed in Chapter 4, and their
structure, as a system of ordinary differential equations, analyzed
in terms of degrees of freedom, reducibility to various simplified
forms, influence on matter content and knmown exact solutions. Chapter
5 deals with some qualitative effects of evolutions, particularly the
dynamical effects of the geometry near o the singularity and in iso-
tropization.

In these notes I have adopted the following conventions. Greek
indices may run from l...n for any n, but when used in a gpace-time
run from 1 t0 4 while Latin indices then run from 1 to 3. x4 is the
time coordinate. The signature is + 2 for Lorentz metrics and the

Ricci identity xeads

- - RS
VeV 5 = ViV &= Vix, xq 2v= Frep %5
for any vector basis {X«} , Where X7Y.g denotes the covariant derive
ative of Z in the Y dirvection. The Ricci tensor and Ricei scalar are
E
Roc(b = R asas ] R=R°‘m
and the units are chosen so that Einstein’s equations read
G'“p + Ag“ﬂ = T“ﬂ

where Gmp = Ru@ - % Rg&p is the Einstein tensor.
A comma between indices denoctes partial differentiation, with

respect to subsequent indices, a semi-colon covarlant differentiation.

Indices in square brackets are to be skewed over, those in round brack-

ets to be symmetrized.



2. Introduction to transformation groups and isometries

2e1e The Lie derivative

Let ¥ be a vector field on a manifold M, and suppose its inte-
gral curves are 'Y’(u), u being the coordinate such that ¥ = /9 u.
We can then consider the tramsformations &, : Y(u) —— (u + u) where
u has a fixed wvalue for each (I)u. These transformations simply carry
each point of M a parameter distance u along the integral curve pass-
ing through that point.

Since @u maps M onto itself, it maps geometric object fields
on M to similar geometric object fields. (4 geometric object is an
entity which has well-defined components in any coordinate system, and
a well~-defined law of transformation for these components under any
coordinate change. Tensors are geometric objects, but so too are such
quantities as the commnection, which do not obey the tensor transforma-
tion law, The action of d)u is called "Lie transpoxrt" or "dragging
along".) One can now compare the value of @, G at a point p with
the value of G at p, for any geometric object G. (Here I use @u
rather inexactly to denote the map of geometric objects associated
with cbu itself.)

The Lie derivative ;.B,Y G of a geometric object G with respect
to Y is defined to be a

g- d ¢
£y 6= lin (—“1—.%&1) .
~ w0
One can evaluate the components of £Y G quite easily, at a point p,
by taking a small u and using a coordinate system {x/‘} « Let the
point p have coordinates p/ and the vector field Y have components
Y*, The point g such that Cbuq = p has coordinates pM - uY* (p), up
to order u . Using this formula for a neighbourhood of p we define
new coordinates x* = x*- uw¥*(x). ¢ G has the same components at
' (in the {x7}system) as it had at x™ in the {x#} system. The
components of G in the x™* system can be evaluated and compared With
the components of (I)u G, and so on. Let us carry this through for a
vector field Z.

The components of Z at q in the {x*} system (i.e. of @ug at
p in the {x} system) are 2/ (p) -~ uz”,y YY (p), to oxder u « The
components of Z at p in the [x"‘} system are 2 %:—?,L = zY (&% -uyf,
to oxder u . Thus

(£,2)" = oYY - 2Y Y, . (2.1a)



This has the same components as [¥, Z], the commutator of the two

vector fields., (The commutator can be understood by treating Y as a

differential operator Y 9/9X* and defining [¥,Z] to be the oper—

ator such that for any scalar function vy , [Y, Z]ay = I(ZY)-Z(IW.)
Thus

£.2= [ 2]. (2.1)

Since the ILie derivative can easily be shown to obey the normal
rules of differentiation {e.g. Leibnitz’ rule), and it is also easy
to see that for a scalar

£X1-V =Xy ,

one can readily deduce from (2.1) the effect of éY on any tensoxre.
For example, for a differential form, with components Wu , we know
that U)#Z'”' is a scalar, if Z is an arbitrary vector field. Thus

v

A Vv
,{Y( W, z*) wﬁ,\,zf‘*‘z + wuzt Y

/L
(Ldywin 27 + (£42) Wu
80
M v v M
(.fxg_a)/,, 27 = (Y + wav)z
using (2.1). Since Z is arbitrary this implies
- v v
(fxg)f" -U.)/‘_,.\,Y +Y)/4,UJV
For a tensor with itwo covariant indices (i.e. components a),,g) we can
ghow similarly that
= ¥ $
(,%ZQ)P\, =auve ¥’ e, Y, +ag, Y5, (2.2)
Pinally note that when we are dealing with a Riemannian manifold, with
metric g say,

M v M v
Z;vY -Y;vZ

(£,

(agx W )

v EY
Wy .y Y + Y ;/L“J\’ (2.3)

and
(£y8) =Y.y Fryim -

These results follow from the symmetry of the commection and the prop-
rt = O,
SEW Epvie



2424 Lie groups and Lie algebras

The topic of this section is rich enough to fill at least one
complete book, more likely several, and I cannot possibvly hope to give
here moxre than the sketchiest of outlines. TFortunately there are many
available texts for the interested reader to consult; I wyself learnt
the subject from the book of Cohn [1].

4 Lie group G is a group (in the usual sense of algebra) and
also a differential manifold such that the map G ) G+ G given by the
algebraic product (a,b) —» ab iz differentiable. (Strictly, it must
be twice differentiable, and it must then be analytic. See Cohn 1]
pages 44-47. In the usual tradition of British applied mathematics I
ghall ignore all such analytical problems on the grounds that we can
always approximate the physical situation by a model as smooth as we
likes)

If 2 € G, we define the right translistion Ra and left transia-
jigg_La associated with & to be the maps of G into itself defined by

bL, = ab, bR, = ba.

{For clarity in this section we follow the algebraist’s convention of
writing the map on the right, so that the composition of two maps f
end g, where g is performed after f, will be written fg automatically.)
Since aRbRc = abe = aRbc we see that the set of right translations
forms a group isomorphic to G itself. The left translations give
Lch = ch, so they are in fact a group algebraically dual to G: as
we shall see, this group is also isomorphic to G. The left transla-
tiong commute with right translations, l.e. aLbRc = aR L.

A left-invariant vector field on G ig defined to be one which
is invariant under left translation, i.e. if ¥ is the vector field,

its value at ab is given by

x(ab) = y(®)(Ly),

where (La)* is the map of vectors associated with I . Given the value
x(e) at the identity e of G, this defines y uniquely at all points (by
v(a) = g(e)(Lak_ , Which 1s easily shown to be left-invariant), and
conversely v uniquely defines v(e)s This shows that G has the same
dimension at all pointe (since (La"o* and (Lahe give an isomoxrphism
between ra(G) and te(G) where Tb(M) denotes the space of vectors
tangent to M at p).
FProm a left~invariant vector field, we can construct a mapping



$.: G—»C as in Section 2.1. It is clear that this map commutes with

u
left translations, by its construction. Then if e @u = b, we find that

ad, = el d, = ed, L, = bL, = ab.

So <§u = Ry. Thus we deduce that the left-invariant vector fields
represent infinitesimal right translations. Similarly, right invari-
ant vector fields represent infinitesimal left translations.

The left-invariant vector fields form a vector space of the same
dimension as G (since the correspondence of ¥ with y(e) is a linear
map). The commutator of two left-invariant vector fields is left~in-
variant, since for any map f: M—N where M, N are differential mani-

folds, the corresponding wmap f, of vectors gives
(x, ¥]f = [Xfu, I8 -
T™is last statement follows from taking an arbitrary scalar function
Y on N, and using the definition fo(y (Xf,)) = (foy)X then
(foy) [X,X] = ((foy)DX - ((foy)X)X
(foly (¥f))X ~ (folvy (Xfy))X)
To((y@(Xfw)) Efu) ~ fol(y (Xfi))Xf)
£o( Y [XfxsXfx])

fol y[X,X]tw)

it

The commutator [X,Y] has the properties

[Z!EJ =0
[Z.vl] == [Jtl,(]

(%, [X,2]] + [X.[2,2]] + [Z.[ZsX]] =0 (2.4)

The equation (2.4) is ¥mown as the Jacobi identity. Any vector space
with a product linear in X and Y and obeying the last three equations
forms, by definition, & Lie algebra. Thus we see that a Lie group has
associated with it a unique Lie algebra. It is possible to show that
every Lie algebra defines a unique Lie group, G’ say, such that each
other Lie group with the same Lie algebra is an image of ¢” under some
homomorphism; this theorem is far too difficult for these lectures.
The different groups with the same Iie algebra differ only in their
(global) topological properties, e.g. connectivity. Thus the alge-
braic structure of G is defined (up to ‘these topological considera~
tions) entirely by that of its ILie algebra. It is usual to express
the latter by taking & basis {X4} of the Lie algebra, where « = 1,
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2,3eeer and r is the dimension of G. Then [X,, Xo) is in the Lie al-
gebra znd so

[Ews Xal =CTupn X4 (2.5)

for some constants Cr“p « The Cr“p are called the structure cone
stants of the Lie algebra, or eguivalently, of its associated Lie
group{s). The Jacobi identity (2.4) implies

CdﬁDf'C ﬁss]‘_' 0, (2.6)

and clearly Cd/—"h" = - C“Yﬁ .

Now let us return to the right-invarient vector fieldse They
also form a Lie-algebra of dimension r, as is readily shown by inter-
changing "right" and "left" in the above argumenis, and we shall write
a basis for it as {Wa.}. The fact that left and right translations
commate leads to

[Zas Ha] = O (2.7)

We have also

[(Has Bp] = D‘;p Ko (2.8)

Now since, at any point a of G, X.(a) and !{,p(a) are bases of rt'a(G),
we mast have

for some non-singular position~dependent matrix er (2.7) implies
&
¥ &
M, Cyp -gp(Mm ) =0
and then (2.8) yields

Moo 8] Y

&
[Mau ?Er' M/’ }5/5]

s by
(Mmefb I:—X;K" ,XJS] + (Mou{,xv Y‘(Mﬁ NEs

3
-M PR (M T NE,

$ L E ar & 4 E 5 ¥ ~E
(M,}”Mp Cfps + MM, Cohp = M " M7 C%6) X,

5 1
= - (MIMCE M P )0,

where M'l"P is the inverse matrix of M_ . By taking the bases to Dbe
such that M, ¥= ~§F at e, we find

Dﬁprz co(/bx‘ (2.9)

Thus the Iie algebras are isomorphic, and so are the Lie groupse. A4n



"

i1somorphism is given by f3 Ryw—1I,.4, for then Raﬁ—*L(a§z4 = Lyttt =
= Ioqly-t= £(Ry)E(R,). It is more usual to take M, ¥=5.Y at e, with
the results that

One can define subgroups of &, and subalgebras of its Lie alge-
bra 6, in the usual way. It is then possible to prove that if |/ is
any subalgebra of 6, it corresponds to a subgroup H of G which ig an
analytic sub-Lie~group (e.g. Cohn [1], page 120). If H is a normal
subgroup and closed (in the sense of point-set topology) in G, then
one can form the quotient group G/H (in the usual way, i.e. from co-
sets of H in @) and its Lie algebra is isomorphic to &/8 (conn [1],
page 132). This implies that § is an ideal of &, i.e. that f is a 1in-
ear subspace of the vector space 8 end also that if X e  ana Ze #
then [;, ZJ e fi. Pinally one can show that if fl is an ideal of @,
then its corresponding subgroup H is normal in G (Cohn [1], page 138).

2.3« Bianchi clagsification of real Lie algebras

It is possible to systematically list all real Lie algebras which
are non~isomorphice. For the 3~dimensional algebras this was first
done by Bianchi [2], and it is this classification that is relevant
to spatially-homogeneous cosmologies. Let me first, however, give the
result for two-dimensional groups. The classification examines the
commutators. These fthemselves form a Lie algebra, which is a subalge~
bra of G called the (first) derived algebra of 8. In the case of a
two~dimensional group there 1s only one commutator to consider. If
this is Zero, the group is abellan and is called type G,I; any basis

obeys
(X40%p] =0 (2.11)

If the commutator is not zero, the derived algebra is one-~-dimensional
and we can choose 31 to lie in it. Then i ;1,321 = XXy for some con-
stant X , and by scaling ;2 we can arrange that

[X9:%5] = %4+ (2.12)

This non~abelian group is classified as GZII..

As with the G,, Bianchi’s method with the three-dimensional al-
gebrag was to consider first the dimension of the derived algebra and
. then to enumerate all posgsibilities. This gave him nine inequivalent
types, of which type I is abelisn, and has zero-dimensional Lie alge-
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bra, types II and III have a one~dimensional derived algebra, types
IV, V, VI and VII two-dimensional, and types VIII and IX three~dimen-
sional. Types VI and VII in fact are one~parameter families of alge-
bras, where cextain values of the parameter are excluded because they
yield types IIT and V instead. Bianchi’s classification has been mod-
ified in recent years [?,4] and the present method is as follows.

Take any (positive definite) scalar product on @, and suppose
its components in the basis {X.f} are Ba«p Let €*P¥ Dbe the corre~
sponding completely~-skew pseudo~tensor. Then write

A A N L T (2.13)

This defines the vector 4, (on 6) uniquely, since

1 = ') 21 =
A?“Igsﬂscrérgﬁ =5 C ou

and it defines N‘*s, which ig symmetric, up to an overall (positive or
negative) scale factor, since any itwo completely skew r-tensors on a
vector space of dimension r are proporiional. The Jacobl identity
(2.6) is equivalent to

N*Pha, = O, (2.14)

Te classification now gives two broad classes, Class A where Ap = O,
and Class B (4, A 0), each divided into several types according to the
rank and (the modulus of the) signature of N%*,., Clearly in Class B
the rank of N®° is less than, or equal to, 2. When Ap # O there is
a further invariant h, which can be defined by

(1 + h)c“{m ngs = =2h c"‘sp Csw.
This is the one parameter required to subclassify types VI and VII:
when h = O and 4, # O we have type Vo If Ap = O then h = O and we
have types VIO and VIIo which belong to Class A. When h = -1 we have
type IIT. In general h > O gives type VII and h < O gives type VI.

By rotating the basis {z,} {rotation being defined relative to
the metric gyp on ﬁ) we can diagonalize the matrix n*P so that Ao =
= (4,0,0) and N**= diag (N,,N,,N;) and then by scaling the basis we
can set the non-zero entries in Nuqz to +1 or -1 as appropriate. In
types IV and V we can also scele to set A = 1. In generalh = A2/N2N3
g0 the scaling gives 4 = VTET. The resulting classification and ca-
nonical forms are shown in Table I.

The canonical form for the structure constants does not fix the
basis uniquely. Suppose we consldexr an arbitrary change of basils, il.e.
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take any linear transformation in the group GL(3) of transformations

of a three~-dimensional vector space. GL(3) is a nine-dimensionsl
group, since it can be represented by (non-singular) arbitrary-3X3
matrices. The nine structure constants must satisfy three Jacobi iden-
tities (2.14). There are thus six arbitrary entries. In Class A

these are the entries in the 3X3 symmetric matrix Nypa, while in Class
B they are the 3 entries in the vector A, 2and the 3 entries in a sym-
metric 2X 2 matrix transforming a plane complementary to AP .

Table I, The Bianchi Classification

Class A B ]

Type I II VI, VII ) VIII IX |V IV III VI, VIT,
Rank Nyp o1 2 2 3 3 |0 1 2 2 2
|signature (N“p)| 0o 1 0 2 1 3 |0 1 0 0 2
A 0 0 0 0 o o0 |1 1 1 -h h
N, o1 0 6 -1 1 ]l0o o o 0 0
N, 0 0 -1 1 1 1 {0 0 -1 -1 1
Ny oo 1 1 11 ]Jo 1 1 1 1

In types VIII, IX, VIh and VIIh there are no further restrictionms,
so there are 6-dimensional sets of structure constants for each type
here (5-dimensional in types VI, and V1L, if the value of h is fixed),
In types VI, and VII the matrix N*? must be singular, so there are
5 independent values of structure constants, and similarly in type IV
the (2X2) matrix must be singular, leaving 5 freely specifiable struc-
ture constants. In types II and V only a vector (3 free constants)
cen be given, this being Ap in type V, and the first row (say) of N*P
in type II. In type I there are clearly no free constants. This in-
formation is summarized in Table II, where d is the number of freely
gpeciflable constants giving a particular group type.

Table IT, Preedom to specify structure constants for a given group type

Type I II VI, VII, VIII IX V IV VI, VIL

a o 3 5 5 6 6 3 5 5(6) 5(6)
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In Table II the 5(6) under types VIh and VIIh reflects the ambi~
guity about whether h is to be specified or not. Using the terminclogy
and results explained in the next section, it emerges that the stabil-
ity group of the canonical form of the structure constents (within
GL(3)) has dimension 9-d from equation (2.15). These considerations
are implicit in some work by myself [5], stated by Collins and Hawking
(6], and further explored by Siklos [7].

It is possible to classify higher-dimensional algebras but these
results will not be required for our purposes in these lectures.

2+4+ Groups of Transformations

Suppose we have g manifold M and a Lie group Gr of transforma-
tions of M onto itself. We write the absiract elements of G as a,b,.ee
and the corresponding maps of M as Ta’Tb""’ the action of Ta on M
being given by p —>pT, where p is any point in M. (Strictly, the
group of the Ta is homomorphic to, not identical with, the abstract
group.) We must have

T, Ty = Py

If idM is the transformation pwsp for every p &€ M the group &
is said to act effectively if and only if Ta = idM implies & = e, where
e is the identity of G. If G does not act effectively, the subgroup
N such that I, = 14y, is clearly normal and so can be eliminated by
passing to the transformation group G/N. Prom now on we shall be speak-
ing only of effective transformation groups.

A given left~invariant vector field vy on G gives rise to a one-
parameter subgroup of right translations R, w) on G where b(u) = e(bu.
This gives rise t0 a one-parameter subgroup Tb u of transformations
of M and thus to a vector field ¥ on M. The vector fields defined in
this way form a Lie algebra isomorphic to that of G itself. Since the
construction gives the zero vechor field on M only If y is zero on G
(because G is effective), we need only find some map f 3 Gr=M such
that yf, = V; the result then follows because f, 1is linear and
[XfwsXix] = [X,Y]f4+ Actually we can do this only on submanifolds of
M called the orbits of G. These are defined as follows: if p e M, the
orbit of G through p is the set {pTa} of all points pTa, 8 e G

In an orbit we define pT ¢ Gr»M; ar>pT,, taking a fixed p. The
required map is then (pT), . To show this we first note that if the
base point is ¢, we obtain

aTyT, = afy, = (ba) (pT) = (aLb)(qT) = a(Lb(qT)).
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Thus if we had chosen a different base point g, such that p = qT,,then
(pT) = L,(qT) and so (pD), = (L), (qT) s If ¥ is a left-invariant
vector field we then have y(pT), = g(Lb)*(qT)* = v(qT), . Therefore

we need only evaluate the effect of pT, at e. If we consider the map
pTy 3 Ry Gr+>»M given Dby u;_..'b(u)._.»pr(u) , we find PTb(u.) = e@u(pT)
and thus at p

.Y = 1(pr)* = l(e @u)* (pT)* = x(p’_]_‘)* ’

using the chain rule.
Thus we have proved that on each orbit the vector fields ¥ form

~

a Lie algebra isomorphic to that of G, and this must be true at every
point p ¢ M, since p e {pTa}.

We define the stability group of p to be the group { a:t a e @
and pTa = p}. If a is in the stf?ility group of p and b is not then
(pTy) Ty-4 T, Ty = P Ty, = PTy so b” 'ab is in the stability group of pTy.
Thus the stability groups of different points in the same orbit are
conjugate subgroupes of G. The Lie algebra of the stability subgroup
consists of those left~invariant vector fields such that v(pT), =0
at pe Thue if r is the dimension of G, and s the dimension of the sta-
bility subgroup of p, then

r=m+ s (2.15)

where m is the dimension of the space spanned by all v(pT). at p.
Thig is in fact the dimension of the oxrbdit through p, since pT maps G
onto the orbite {(Perhaps I should remark that although pT is a peéer-
fectly good map of menifolds 1t does not preserve the group structure
of &, in general.)

A transformation group 1s said to be transitive on its orbits,
simply~trangitive if s = O and multiply~transitive if s > 0. It is
possible for ¢ to be different on different orbits, as in the case of
rotation of a plane, where 8 = 1 at the centre of rotation and 0 else~
where. However s is constant within an orbit because conjugacy is an
isomorphism and the stablility groups of different points are conjugate;
hence we also find m, the dimension, 1s constant throughout an orbit.

In the case of a simply-transitive group, one can, by choosing
a fixed p, make each orblit isomorxphic to G itself using pT (assuming
the global topologies are identical). In this case the product
(pTa)(pr) can be unambiguously defined as pT_ , and pT now preserves
the group structure. The map gives & map of the right-invariant vec-
tor fields W to Vector fields on the orbit. 4 basis {W.} of right-
invariant fields then gives a basis, which, with some loss of claxrity,
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we also denote {W.} , of vector fields on the orbit (a basis in the
senge that any vector field can be written as 2 2™ ¥y with non-con~
stant 2% ). By a similar abuse of language we shall use {X¥«} for
a basis both in G and in the oxrbit, using left-invariant fields on G.
If we take any left invariant vector field v with corresponding field
Y on the orbit then [W«,L] = 0.

One can find canonical coordinates on G, for example, by finding,
for .a given point a € G, the vector v = 2> x% X, such that a = ed,,
@u being defined by v, where X, are some basis of left-invariant
vector fields and x* are taken as the coordinates of a. These same
coordinates can be used on the orbits of simply-transitive groups,
using an identification pT. The basis X, can be chogen to give the
canonical form of the structure constants. The origin of the coordi-
nates will be at e in G or p in an orbit, and the basis vectors {X.}
will have the values %‘ at the origine. It is possible to choose
a bhasis {E,‘} of the right invariant fields in accordance with (2.10)
Let us denote the duals of the W by w™ . Then since £y Hu =
=[X45s0.] = 0, ‘£'X wW*= 0 also. In table III I give values for
X}, {¥,} eand 5P for the Bianchi types with structure constents
as listed in Table I. These forms depend first on the chosen canoni-
cal form of structure constants. They then depend on the cholce among
the (9-d)-dimensional set of bases {X.} with the same structure con-
stents (as described in section 2.3). There are in fact alternative
ways of defining canonical x* from the X« {see e.ge Cohn [1], page
110). There is then the freedom to choose the {0« at e and the
point p in the oxbit. For these reasons, many forms can be found in
the literature. With our conventions the freedom is restricted to the
(9-d)-dimensional choice of bvasis {X,} and, in the orbits of simply-
transitive groups, the choice of pe.

The resulting vector fields {ﬂ“} generate another group of
trancsformations on the orbits of a simply-transitive group, which is
called the reciprocal group. It is the image of the group of left
translations and is algebraically dual to the transformation group
itself.

Having completed my remarks about purely algebraic aspects of
the problem, I shall now revert, where appropriate, to writing maps
on the left in accordance with the usual analyst’s convention.

The most thorough treatment of groups of transformations is in
Eisenhart’s book [_8]; I ¥now of no comparable work using modern dif-
ferential geometric notation.
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forms in each Bianchi type. Here 7,.=3 /O0x% .
Type I 1T Iv v
Ko 4 '3)1 '31-x232-(x2+x3)33 31-x232-x 4]
9z % CP) 9,
2
93 | Q5+x 0y Gk 9%
¥o 9 2 94 9
1
- 4 et
s Op+x e xi(az-x 95) x‘az
3 | 93 <05 <05
w® ax! ax'-x’dx dax’ ax!
i 1
dx2 dxz e* dx2 e* dx2
4
ax> dx (x1 dx2+dx3) ex‘dx3
VI (including III) ViI

'«31 +(x0=-Ax2 )32+(x2-Ax3)33

]
2 3,
% %
9, Ry
e (comx'd, +ainn x'35) R S %' y-s1n x'9)

Ax! vt

Ax (sinh x182+cosh x193) e~ Ax (sin x132+cos x193)
ax’ ax’

4 1
X (cosh x'ax°-sinh x1dx3) eAx (cos x Tax-sin x dx3)

1
ehx (~sinh x'ax%+cosh x1dx3)

Ax (sin x'dx?+cos x dx3)




VIII

31
- sinh x tenh x291+cosh x132—sinh %' sech x283

cosh x tanh x231-sinh x192+cash % sech x233

sech x°cos x331-sin x332-tanh %% cos x393

sech x°sin x391+cos x332-tanh x®sin x333
%3

BGX?

cosh xzcos x3dx1-sin X

2

cosh x gin x3dx1+sin x36x2

sinh xzdx1+dx3

IX

81
sin x1tan x231+cas x132+sin x1sec x233

cos x tan x291-sin x192+cos %! sec x293

sec x°C0s x3aﬁ-sin x392+tan x°cos x383
sec x°sin x331+cos x392+tan x°sin x393
03

cos xzcos x3dx1-sin x?dxz

cos xzsin x?dx1+cus x3dx2

- gin xzdx1+dx3
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245« Isometry groups

In relativity we are interested in Riemannian space-times, and
thus in transformations that preserve some or all of the Riemannian
structure. TFor the present purpose we restrict attention to isometries
or motions, which are transformations that preserve the metric g. For
a continuous group of isometries we will then have, for each generating
vector field ¥,

£g=0 & Y usvy = 0 (2.16)

using (2.3). (2.16) is known as Killing’'s equation, and its solutions
are called Xilling vectors (strictly, Killing vector fields). The
¥illing vectors form the Lie algebra of a Lie group of isometries.
The stability group of p within the isometry group is usually called
the isotropy group of p; its generators have ¥ = 0 at p. Consequent-
1y it gives rise to a group of linear maps of vectors at p to vectors
at p, by (2.1)s This is called the linear isotropy group. Since each
element of the linear isotropy group preserves the metrix, it must be
a subgroup of the appropriate "rotation" group (the Lorentz group for
a space-time, or the group S30(3) for a spacelike surface)s. It can be
shown to be isomorphic to the isotropy group, as follows.
Theorem 1t The only Killing vector field which satlsfies ¥ = 0 and
Y:#r9= 0 gt & given point p is the zero fileld.
Proof: Such a Killing wvector field fixes p and any vector at p. Any
point g may be connected to p by a geodesic (at least, in the path~
connected component containing p). Since ¥ preserves the metric it
transforms geodesics t0 geodesics and the length from p to ¢ is also
unchanged. Hence the geodesic from p to g, which has a fixed length
and given initial tangent vector, does not move and so ¢ is fixed.
Thus ¥ = 0 at g.

Now if two linear isotroples are identical, the Killing vectors
I,s Y, generating them obey Y, =0, Yf”v = 0 at p where ¥ = Y, - jé,
and thus using (2.1) ¥, - I, = 0, which implies ¥; = Y,. Hence the
isotroples axre identical, and so the map of isotropies to linear iso-
tropies is an isomorphism,.

Theorem 1 immediately gives another useful result
Theorem 2: If a group of motions Gr of dimension r acts on a Rieman~-
nian manifold of dimension m, then

r £ mim + 1)/2 (2.17)

Proof: Let {X«} be a basis of Killing vectors of the group. Since
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the group is assumed to be effective, ¥ = O corresponds uniquely to
the identity of G.. For any constants C*, C%Xw = Y is Killing.
Take any point p, and‘ choose the C™ . so that at p, Y, = 0 and Y, ;»=
= Os There are m +m{m ~ 1)/2 =m(m + 1)/2 linear equations for
the % . If r >w(m + 1)/2 they have non-zero-solutions, giving
Y # 0. But Yu and Y.,y are zero at p and so by Theorem 1, ¥ = O,
Hence r < m{m + 1)}/2 .,

The actual value of r is determined by the number of additional
conditions to be satisfied by the Y and Ytﬂ;vl at a point p. This
depends on the number of independent conditions arising from the inte-
grability conditions on (2.16). Differentiation yields

,{Y F: 0 == Y}“;\,w = Rf,gqu Y? (2‘18)
as a first order differential equation for Yﬁ;, , and
£1(RH‘,W?; 31 520006'1‘1-)

for N = 0,1,ees are the integrability conditions of (2.16) and (2.18).

2e6¢ Spaces of constant curvature

A Riemanmian space is said to be of congtant curvature if

R pvrg = K{(gus Bvg = 8ps Evw ), (2.19)

where K is a constant. The name arises from considering the sectional

curvatures, which are the curvatures of geodesic itwo-dimensional sub-

manifolds passing through a given point p, defined by drawing all ge=~

odesics through p whose initial tangent vector is a linear combination

of two givenﬁv%ctors, uq and Yy say. The two-surface has a metric

Eap = Enviyye z);h 02
surface. The two-gurface curvature Rabld has only one independent com=-

ponent, say 34222' and its (Gaussian) curvature K is defined as
1212/de1;(gab), the sectional curvature being K(p).

Lemma 1: X is ind?pendent of the c%oici of co?rdinateszy

Proof: If y*—»y® , Rg’{z_nmm(gwﬁ%—i} .’3_’,% R{y, 9 where J

is the Jacobian determinent of the coordinete change. 3But det(g;b) =
2
J

where the y are some coordinates in the two-

det(g,)s =0 K is unaltered.

Lemma 213
Lemma 2 Ruymg wj uy ul uf
E(p) = at p

(g/u:rr 8ve = Sue gvﬂf)uf uz"’ u?‘ ug
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Proofs: Let v,, v, be orthogonal unit vectors in the plane of yu,, Upe
Choogse coordinates in the 2-surface by assigning the point at distance
T slong the geodesic with initial unit tangent vector E°y, the co-
ordinates y> = T g’a. These are called Riemannian normal coordinates.
Similarly let {x*} be Riemannien normal coordinates in M. Then the
Christoffel symbols of the first kind are

{abyc} = vivy vy {/J.V,']T}

and at p {ab,c} = Q0. Then

)
Ryo12

34 fe2,1 - 202,11 ety

v.’]u“ vz‘" v,f\r vze R/,,,m—g

To obtain the lemma one now has to remember that the expressions are
tensorial, and transform to general coordinates and a general basis
of the tangent plane to the 2-surface.
In general K depends on p and the plane of u, and w,, but clear-
ly in a space of constant curvature X is independent of these.

If we have a space of constant curvature we can find its metric.
This follows from the next set of theorems.
Theorem 3: A Riemannian manifold of dimension m—>>=3 is of constant
curvature if it admits an isotropy group of dimension m{m - 1}/2 at
every point.
Proofs In this case K is independent of the plane of u, and U, since
the isotropy group is isomorphic with the whole of the relevant "rote-
tion" group, and the curvature is invariant under isotropies. Thus
A pvsre u,]"*uzvu1avu2? = O for any choice of u,;, W,, where 4 ,yor¢ =
= Ruves = K(Guw Bvg = Bpug g ysr)s By the usual type of "tensor
detection theorem" or "quotient theorem" argument

Ber Y

A}g‘\’ﬂ? +A)u,g57~3 +Agfy/_;§ +A57§}‘"" =0

and hence, since A .yx¢ has the symmetries of R uvswg , we can de-
duce that A nvwe = O. Finally the Bianchi identities R uumejer= O
contracted on v§ give

(m - 2)(K;)-tgﬁr - K¢ g)u:r) =0
and thus if m » 3 we can contract again to give

(m~- 1)K,n =0 K is constant.
Theorem 4: A Riemannian manifold of dimension m is of constant curva-
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ture Lif and only if it admits an isometry group of dimension m(m+ 1)/2
Proof: "if" : By (2.15) 8 = m{m - 1}/2 o Then for m » 3, Theorem

1 proves the result., For m = 2, K is the only independent curvature
component and since the whole manifold is a single orbit X must be
constant.

"only if". The conditions &£,Ruvme; & (6pe.. = O are all identical-
ly satisfied. Hence by the argument at the end of Section 2.5 the re-
sult is proved.

Corollary 1: The converse of Theorem 4 is true.

Proof: uscing "only if" part of Theorem 4 and (2.15).

Corollary 2: A two-dimensional space admitting a G2 of motions admits
a G3 of motions.

Proof: The Gz must be transitive, to satisfy (2.15). Thus K is the
same at all points. Thus by Theorem 4, the space admits a G3.

Theorem 5: Any two metrics of the same constant curvature K and the
same signature are equivalent.

Proof [20] + Starting from any set of Riemannian normal coordinates
{y*} one can transform to a set

K o»
=S _g{_' ( 9 x ) 7 Vee gk
K=1

Dy Ayt eua Dy«

*

where

2
¥Vx e 9 x# m
= [ it = - etc.
r()yo S y ? »ay\%ayvz r' ViV,

at the origin, so that thexe

D“w*vrﬁﬂﬁ):g

for r = 0, 1,ses, in the {x*} system. In this system the metric
tensor is

1 (0 a_ 1 (o)
gpv = 8%y = 3 Bligur 7777 = 5y Rlluassq vO97 58

superscript o denoting the value at the origin, and the metric is thus
fixed by Rgﬂqga in our case.

Finally one simply has to construct a particular metric of con-
stant curvature, and this is done by guessing, it is of the form
€ ( d8%) where d8&° is a flat space of the right signature, and com-

puting the necessary form for e® . The result is

e = 1Kl (1 +-‘Z— ; Lu(x*)%) (2.20)
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where k = sgn (K), the [, are +1 or -1 1:1 accordance with the re-

quired signature, and d§? = E Lu ( dx’*)
The results of this Section are all well-known classical theo~

rems end appear in many texts, e.g. [8], [20].

2.7« Metrice with isometries

If the manifold admits a simply~transitive group of motions it
is diffeomorphic to the group itself. Using the basis of vector fields
Wo, so that g = g,, W w” and €., = &(Wa, W) we find, treating
Bup 25 8 scalar,

£Y gu{b = £X(g(wmrviﬁ)) =

~

= (fgg)(vlﬁ,,"!p) + g(aﬁxvlu,w,p) + g(v,g,g,aézvg(a)

so the g,, ave constants. Note that the reciprocal group is in gen~
eral not an isometry group.

When the group acts simply=-transitively on orbits which are sub-
manifolds, it is possible at any peint p of an orbit, to complete
{#a} o= 1yeee,m to be & basis {Wu} m= T,eee,n of T (M) by adding
additional vectors, and a basis at other points of {pff.‘ a e G} can
then be defined by the condition £ e = 0 for u=m+ 1,ee.,n. By
the argument above, guv in this basis is constant within each orbit.

If the orbits of the group are hypersurfaces (i.e. submanifolds
of dimension m = n - 1), we can prove that the (unit) normals of those
hypersurfaces are geodesic. Denote the normal by n. Then taking any
Killing vector basis {X.} we must have g(n,X «) = O at all points.
Hence

0= £y (s(mZp)) = (£y &) (@mEa) + el Ly, BXp) +alm & ,)

and since {x g =0, £§§a-"'ﬁ Cr&p&f" and the {X,} at any point
span T, (orbit), we find .'éx n is normal to the orbit. But g(n,n)
is constant so £y n =0, ana nf‘n/_ki\, n” = O, Finally

N“.

= fB(g(E!l{.(a)) = Ragy n” x{f. + (x(z, ))4_51’ nVaM = n};;\) nv x/a#
using (2.16), and thus n/“‘;vn" = 0. We may now take the coordinate t

to be the affine parameter along these geodesics and obtain, if n is
non-null,

as® = gat® + guy axMax” (2.21)
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where x*; u=1, 2, 3,+¢e, (n - 1) are coordinates in the orbits, and
€= + 1 depending on the nature of n.

It is easy to prove the exigtance of manifolds of dimension n
with submanifolds of dimension m on which a group acts simply-transi-
tively: one has only to take any metric go,w™w’ with w* defined
so that iquJ“'-z 0 on each orbit and gup depend only on coordinates
labelling different orbits. Schmidt [9] has also proved the existance
of manifolds admitting Lie groups with isometries specified by arbi=-
trary Lie algebras subject to certain conditions. These questions are
not of significance for our purpose here.

In the same paper [9] and in his thesis [10], Schmidt gave a
method for computing possible Lie algebras of Killing vectors multiply-
transitive on orbits of a given signature, The idea is that one can
choose a basis of Killing vectors {X.]} in such a way that at a chosen
point p, X, = O for &= m + 1,ee.,7e Since these X, correspond to
the generators of the linear isotropy group, which is itself a subgroup
of the appropriate "rotation" group, one can specify the subgroup to
be investigated and then choose the Lo, X =m + 1,seq,r, to give a
standard canonical form of the commutation relations for this group.
Let us denote such X, by gi’ i = 1,e00,8¢ Then

[Zi’ Zj] = f?j Zk

where the f§3 are known. Next one can choose the Killing vectors X, ,
% = 1,ese,m, which are non-zeroc at p, t0 be an orthonormel basls of
Tb {orbit) ané further adjust thie cholce to the choice of gi to give

a2 simple form for the commmiators

[’,{i,LJ = £¥’i (;(,a.). 1 = Tyee0y8, oz 1,ee0,m (2.22)

at pe The action at p of the Xi on the basis X, 1is fixed by the prop-
erties of the orthogonal group, so the coefficients of the X, in the
commutator (2.22) are known. The remaining unknowns are the structure
constants in [X,,%] (%, @ = 1,...,m) and the coefficients of the
Y, in (2.22), which are so far undetermined because ¥; = O at p. These
remaining constants must satisfy the Jacobi identities, and thus all
possibilities can be enumerated.

This method has the further advantage (not explored by Schmidt)
that if the orbit haec a simply-transitive group contained in the mul~-
tiply-transitive group, it is very easy to find because 1t must have
s Killing vector basis {Za} O = T,ese,m equal at p to {X} w=l,ceem
The two bases must obey
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i
,Zaox"'.x,on'*’AocXi

for some congtants Aiq_and one can find all simply-transitive subgroups
by teking arbitrary Als and imposing the condition that the % , form
the basis of a subalgebra.

The above description may be rather hard to follow, s0 I shall
give an example relevant to the next chapter.

Congider a positive-definite two-dimensional manifold of constant
curvature K. We know (by Theorem 4) that this admits a GB of motions
and hence that s = 1, from (2.15). This isotropy group is the rota-
tion group of a plane, so we can choose Xy, Zgr Y so that at p

ul =% (2.23)
5] = %
Thus the full set of commutators must be
LY ] =% +aL
(1%, ] = -%; + bY (2.24)

K1:ZQ] = AXy + B, + CY

pid

term in Y, so by taking a new basis X; = X, - by, gé = X, + aY we can
eliminate a and b. Taking these as zero, we can apply the Jacobi iden~
tity (2.4) to (X,, %5, ¥) to obtain AX, ~ BX, = O. This implies A=B=0
and there are three possibilities, ¢ >0, C = 0 and C <0, By scaling
X9 X, and Y we could set C to + 1 or O, but %y» %, would not then be
orthonormal. Schmidt [9] has shown how to calculate the Riemann tensor
of the orbit of a multiply~itransitive group from its Lie algebraic
structure, and it can be verified that C = Ko The Bianchi types of
(2+24) are VIII (K < 0) VIIT (K = 0) or IX (K >0). Now on taking a
new basis Z, = X, + X %, 2, = X, +@8Y, we find

Moreover, X1 and 32 are only fixed by (2.23) up to the addition of a

(3102 ] =-%2y = B2 + (0 + x? + pPy

g0 that there is a different simply-transitive subgroup corresponding
to every possibdle choice of X and 3 satisfying

C+(X_2+ﬁ2=0

When C >0 this has no solutlions. When C = 0 there is exactly one so~
Jution, X = /3 = 0, and the simply~transitive group is of type G2I.
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When C < 0, there is a one-parameter family of simply-transitive groups
of type G2II arising from the solutions o = tclcascp s 3= lclsincb
for arbitrary ¢

The advantage of finding a simply-transitive subgroup is that
one can use its reciprocal group to put the metric in a simple form,
and so make computations of curvature more quickly than by Schmidt’s
method. In fact the reciprocal group basls can be chosen so that it
is orthonormal everywhere, and agrees with Z . at p.
Theorem 6¢ A Riemesnnian manifold of dimension m >2 cannot admit a
maximal group of motions of dimension m(m + 1)/2 - 1,
Proof: We first prove the result for m = 3. Herem(m + 1)/2 -1 =
= 5 and the isotropy group of a point p has dimension 2. It therefore
acts on 2-dimensional submanifolds (hypersurfaces), and thus the metric
has the form (2.21). The hypersurfaces have curvature K(t) and their
metric can be written in the form (2.20)s Then the third Xilling vec~
tor of (2.20) for a given t clearly is Killing for all t and preserves
(2.21). Thus p has an isotropy group with s = 3, contrary to hypoth-
esise

Now for m >3 we prove the result by induction. Using an analo-
gous argument to that above we see that there are (m -~ 1) dimensional
orbite of a group of dimensionm{m + 1}/2 ~1em=z=mln - 1)/2
contrary to the hypothesis for dimension (m - 1)« But the induction
starts at m = 3, and is thus valid for all m > 2.

3. Spatially~homogeneous cosmological melrics

3.1« Bianchi models

A space-time is said to be spatially-homegeneous if it admits a
group Gr of isometries acting transitively on spacelike hypersurfaces.
If we put m = 3 in (2.15) and Theorems 2 and & we see that the only
possibilities axe: r =3, s = 0; T = 4, 8 = 1; and r = 6, 5 = 3. We
take each of these in turn, starting with » = 3.

Spatially-homogeneous cosmologies with r = 3 are known as Bianchi
models, because they can be classified according to the Bianchi type
of their G; of motions. The metrics can easily be written down (in
terms of unkmown functions of time) in any of a number of different
forms. As described in Section 2.4, one can take any point p of ¥,
and assign coordinates on the orbit through p in accordance with Table
ITII. To agssign the coordinates on other orbits one can choose any
vector v at p not lying in the orbit, and any curve Y(y) with v as

~
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its initial tangent vector, and then propagate this vector and curve
by dragging along bty the Killing vectors. The cooxrdinates then be
made co-moving with respect to y. The obvious choice for y is the ¢
of (2.21)s If one introduces the reciprocal group bases given in Ta-
ble III, one will have [%?,ga] = 0, where a = 1,2,3 hence the whole
metric is

ds® = - dat® + Ep(t) w P (3.1)
8ap being a function of t alone. This form of the metric is used ex-
tensively in the literature (see e.g. Ryan and Shepley [11]).

A slightly different choice arises in a natural way when the
matter content gpecifies uniquely a (unit) vector field u other than
n = %%? , such as when the matter content is a perfect fluid flowing
with four velocity u # n. Then one can take u = %%T s say, and make
the space coordinates co-moving with respect to T . Introducing the

W, as before we will obtain

b

2 b
ds® = = AaT% + 2(gg") WT + gy WP W (3.2)

where the g,, are the same as in (3.1), and u = u4g,+ uaga. (Note

that since the W  commute with the X , as do u and 7, the change of
cooxrdinate origin in each orbit will mnot alter the actual fields ¥,
although it will alter their coordinate form at a given point of M),
This is easily derived by finding the dual basis to {u,W,}n terms of
the dual basis of {m,%,}; 1t is {dv, %)} where at = utat, &P =

= u2aT + w?; and this can then be substituted in (3.1).

A quite different way of writing the metrics is to choose an or~
thonormal tetrad of vectors {@uoj; o = 1,eesp4} in each orbit in
guch a way that gy = n and the g, are reciprocal group generators.
This possibility has been exploited by Ellis and MacCallum [4], and,
in a different notation by Estabrook et al. [5]. If the dual basis

iz {e%, O = 1.se4}, the metric is of course
as® = =(eH? + ()2 + ()2 + ()2 (3.3)

Since g4 is exact (being just 4t), dg4 = 0s The commutators of the

{ga, a=1,2,3} mst have the same Lie algebra structure as the G
itself, end the method of classification given in Section 2.4 can be
applied using the metric induced by that of space-time, €ap = é{%.
However, it is not permissible to scale the 8q {or the orthonormality
is lost) so their commutators can at best be reduced to a form

[carep] = Y avse (3.4)
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with
1 c abd cd d
5 ¥ ap € =n +6°eae (3.5)
and !
n 0 0
cd 1
8, ® (a,0,0), n = 0 ng, 0 (3.6)
o 0 n3

where h By, ng = a2 and a, ny, Ny, n3 are functions of t alone. The
relation of this choice to (3.1) 1s rather awkward. In a given orbit
the gy, are proportional to one of the (a - d) &imensional set of cholces
of W, consistent with Table I, but since {e4,wb| = O the condition
that this remains true in successive orbits, with a fixed W, as used

in (3.1), is that

E§4’§b] = - Oye, (no sum on b). (3.7)

Tt turns out that certain results are much easier 1o obtain using
the form (3¢3) = (3.6) than with (3.1), and vice versa. There are
other results for which yet another formalisms have proved helpful.

One of these is to adopt (3.3) tut with g, # n. This was used by Ellis
and King [}2, 13] to investigate cosmologies with fluid flowing with
velocity u # n (called "titled" models). They also introduced a non-
orthonormal tetrad {uy,g,} with the g, being the reciprocal group
generators obeying (3.4), (3+5)e Yet another formalism has been ex-
ploited by Siklos [7, 14]. This is to take a null tetrad {1,k,m,&]
as used in the well-kmown Newman~Penrose formalism [15], with the
tetrad chosen so that 1, k and n asre coplanar and the tetrad is inva-
riant undexr the group GB’ This formalism is useful for studying those
spatially-homogeneous models which have algebraically special Weyl
tensors [14] or horizons where the spacelike hypersurfaces become null

[71.

3.2, Spatially-homogeneous cosmologies with 2 rotational symmetry

This section ig concerned with space~times admitting a G4 tran-
sitive on spacelike hypersurfaces. It has been proved by Kentowski
[16] that there is only one case in which the G, does not contain a
gimply-transitive GB‘ A more accessible version of Kantowski’s proof
has been given by Collins [3{]. The exceptional case is known as the
Kantowski-Sachs metric, since it appeared in [18], being Case I in
that paper, tut, as Collins pointed out, it had been used before, no-
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tably by Kompaneets and Chernov [19]. However, Kompaneets and Chernov
d1d not recognige its exceptional character, nor, indeed, did the Kan-
towski-Sachs paper give a quite correct account since they thought the
property was shared by another metric (Case II of their paper). The
reason for this error was that they were unaware that the G3 of a two-
dimensional space of constant negative curvature contains (as I showed
in Section 2.7) & simply-transitive Gz. This was significant because
Kantowski s proof consigted of first proving Egorov s theorem (as
stated, but not proved, in Petrov [20]) that every G, contains a G4,
then noting that if this G3 was not simply~-transitive it acted on two-
dimensional spaces of constant curvature, itreating each of the alge~
bras (2.24) by adding a fourth Killing vector and studying the Jacobi
identities, and finally seeking simply~transitive subgroups of the re-
sulting groups.

Using Schmidt s ideas, as outlined in Section 2.7, I will now
give a new and different proof, which will gimultaneously reveal the
structure of the other space-time with a G4 transitive on spacelike
hypersurfacese

We take the isotropy Y as a spatial rotation with axis X, at p,

Xy X5, X5 belng an orthonormal basis of non~zero Killing vectors at

Pe Then
[Xﬂ&] = C1¥,
[LZQ] = Z; + Co¥
[(XX5] =-% +C51

By a change of basis to gé = %, - 0¥, gé = X5 + CpX we can eliminate
C, and 03, go we take those to be zero. We now write

[(X2025] = W%y + (Nyp = A5)% + (N3 + 45)%5 + BysX,

X5 Xq] = (N + 430X + X, + (Nyx = 4)%5 + ByyX,

[2(,1:22:] = (313 - -AQ)Z,:-; + (“23 + A1)§2 + NB;% + 3121(,4
and apply the Jacobi identlties. The Jacobi idenmtities for (§3,£1,§D
and (X4,%,,Y) yield

2

(Wy5 = 850X + (2Mp5 = CIX, + (Wg ~ Np)Xs + (By, + A (N, +45))¥=0
-(W,, + A3);g1 - (33 - 2);@2 - (2}!23 + 01)2.,3 - (]33,I - A(N13 - 4))% =0

which imply

N23=C1=B12=B31=0=N13~A2=N12+A3=132—N3
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Using these, the Jacobl identity for (X, X35 ¥) gives

(N5 + 4)%y = (Nyp = 45)X5 = O
s0 N13 =4 =N, = A3 = 0, and lastly the Jacobi identities for
(221! 22’ 2&3) yield
24,N,%; + 24,By5Y = 0

so that AN, = A11323 = 0. Thus we have proved the following
Lemma 3: Any group G4 acting on a positive-definite three-dimensional
manifold has a basis of Killing vectors such that the commutators axe

EZJE']] = 0, I:'.Y.’X,Q] = ,X.3' [¥9,}§3] = "ZQ
[£20%5] = W%y + L, [X5u%y] = BpXp - 4%5 (3.7)
(Z10%p] = 4% + NXs

where N,, N,, 4, B are constants subject to N,4 = AB = 0,

These algebras were found by Schmidt EIO] under the additionsl
assumption that C; = O. As we have seen, this assumption is not nec-
€SS8TY e

Next we seek the simply transitive subgroups. Setting g1 =
=X + &Y, & =% + Y, Z3 = X3 + ¢ ¥ We obtain

=WiBy - Py - FBs ot (B N+ 8%+ gAY
= (Fp + X)Zy - A%z -~ (B(Fy + &) - Af)X
= 4%, + (Hy + x)Zs = (AP + (¥, + &) ¥)Y

T 1Y
i S -
- N
- - -
W™ T U
n -5 WN
et L1
[} Ll Ll

The coefficlents of Y In the last two equations vanish only if either
N2+o(,=A=O or @:K”:O (3.8)

If 8 = y = 0, the coefficient of ¥ in [‘Z“Z’Z-BJ vanishes only if
B = xN;. Thus if N, £ 0 there is a unique & , and if N, = O there
is no value of & unless B = 0 also, in which case o is arbitrary.

If §, + & = A = 0, the coefficient of Y in [,sz,gﬁ vanishes
only if

2 2
B+ NN, + 85+ y“=0 (3+9)
For B + N, >0 there is no solution and for B + NyN, = O only the
solution QB = ' =0, If B+ NN, < 0 there is a one-parameter family
of solutions /= kcosP , ¥ = ksin @ where k° = -{B + N1N2) and
¢ is arbitrary.
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These results show that the only case with no simply-transitive
subgroup has N, = 0, B >0, for then neither of the two possibilities
(3.8) yields a simply-transitive group, although the first can be used
to set N, = O in (3.7) without affecting the other commutators. Doing

this last, we find

[%,,%5] = BL, [X5%] =0+ (X402

and (X,, %5, 1) are the generators of a multiply-transitive Bianchi
type IX G3 (because they give a subalgebra one of whose generators is
zero at p) acting on two-dimensional surfaces of constant positive
curvature B, This group cannot be multiply-transitive at some points
and simply-transitive at others because the commutators imply that for

{XZ,N, or ¥}, ;fx =0= £ . X1 and hence g(yx,%) = 0
at all points, being Zexo at p. Thus the Vo« always lie in a plane
perpendicular to X,, which is itself of constant length 1, and there~
fore they can never generate a three-dimensional orbit.

Up to mow we have consldered only one orbit in the space~time
but we can easily find the four-dimensional metric., We define t as
in (2.21)s Then [n,Y] = O implies that on the integral curve of n
through p, Y is always zero, sand the coumutators show that %, is al-
ways the axis of rotation (along this integral curve) being the only
fixed vector in the orbits, and that 22, 33 always lie in the plane of
rotation and are of equal length. Thus all that can change from one
orbit to the next are the lengths of X, and X,. Since [51,352] =0
we may introduce a coordinate x such that Xy = A% ! and the surface
generated by,gz, 53 may be written as

dy2 + 622

B(1 +7(y2 + 22))2

(using (2.20) with k = 1). The metric has X X, orthogonal to n, X,, X Xz
and B dependent only on %, (since %%; is a Killing vector). Thus
the full metric can be written

as? = -at? + X2(t)ax® + Y2(1)(a6% + sin®0do 2) (3.10)

where tandD = z/y, T = yz + 22 = ztan 3/2, and X and Y are functions

of t alone.

The remaining cases contained in (3,7) all have simply-trasnsi-
tive subgroups, snd by an argument similar to that in the Kentowski-
Sachs case, ¥ = O all along the integral curve of n through p and
Z4y Zoy Zz are always orthogonal along that curve. Hence the metric,
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in terms of reciprocal group generators agreeing with Z at every
point along the integral curve of n through p, must be

as® = ~at® + Xz(t) wlw! + Yz(t)(u.) w? + w3w 3) (3.11)

the w* being, of course, independent of t.

The possible cases that can arise are as follows. We exploit
the remaining freedom of choice of X%,, gB to set N, >0 if N1 # O.
1. If N, # 0 we use o %o set B = O. Then there are three possibili-
ties
a) N2 = 0, In this case (3.9) allows no further possible simply-
transitive subgroups and the only one is of Bianchi type II

b) N, > 0. Again (3.9) allows no other simply-transitive subgroups,
and the one found is of Bianchil type IX

e) N2<< 0. This gives a group of Bianchi type VIII., Taking =
= -NZ, B and ¥ non~zero gives a one-parameter family of sim-
ply-transitive groups of type IIl. For these groups an ortho-
normal basis of reciprocal group generators at p will have naa=
=N, # O.

These three metrics have a form of the Taub-NUT type. In Petrov’'s

book [20] a) and b) are the metrics (32.4) and (32.10) and c¢) is omit-

ted.
2. If Ny = 0, (X;, Xz» Y) always generate a wmltiply-transitive Gy on
two-dimensional spaces, with curvature B at p. Apart from the Kan-
towski~-Sachs case there are three possibilities
a) B <0, This is case II of [1g]. It can be put in the form
(3.10) with sinh © replacing sin ©. The mltiply-transitive
group of Bianchi type VIII acts on two-spaces of negatlve curva-
ture and the transformations o = -N2 with varying 3 and ¥
give a one-parameter family of groups of iype IIT. An orthonor-
mal basis of reciprocal group generators for one of these groups,
agreeing with %, at p, will have na = 0 at pe The metric is
(32.7) in Petrov [20].

b) B= 0 = A. This can be put in the form (3.10) with © replacing
sin €. (We can thus combine (3.10) and these last two cases to-
gether in the form

2

as? = —at® + X2(t)ax> + Yo(%)(ae? + £2(0)ad?) (3.12)

where £(©) = sin ©, € or sinh ©.) The multiply~transitive G
acts on flat two-surfaces in the case 2b, and by varying &« Wwe
obtain a one-parameter family of groups of type VIIO and a single
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group of type I. This metric is (32.11) in Petrov [20].

c)B = 0 £ A, Again the multiply-transitive group acts on flat two-
surfaces. By varying o« we obtain a one-parameter family of
groups of type VIIh and a single group of type V. This metric
15 (32.6) in Petrov [20].

The results just obtained are identical with those in [4]

and [17].

2e3+s The Robertson-Walker metrics

Although this school is primarily concerned with anisotropic
cosmologlies, I give here (for completeness) the geometry of the Ro-
bertson~-Walker models. These are the models with s = 3, r = 6.

First we may note that if the metric is spherically symmetric
about every point, there 1s an isotropy group G3 of spatial rotations
about any point. This leaves 8 unique unit future-pointing timelike
vector B,fixed at each point. Thils vector field wust be geodesic and
hypersurface-orthogonal, since the vectors 4% = u°%ﬁuﬁ and %=
= 1/2 Qmpb"g Uguy;s (where Qmpgs 1s the totally skew pseudo-ten~
sor of oriented volume) are orthogonal to u and invariantly—defined,
are thus fixed under the spatial rotations, and hence must vanish.
The hypersurfaces to which u is orthogonal then admit an isotropy G3
at every point and s0 by Theorem % must be of constant curvature.
This curvature way depend on time, and thus by means directly analogous
to those used in deriving (3.10) we obtain the metrics

as® = -at? + R2(t)(ar® + £2(r)(d6% + sinZ0d 9?))

where f(r) = sin r, * or sinh r for (respectively) positive, zero and
negative curvature of the three~spaces, the curvature being k¥/R° = K

where k = + 1 or O.
The structure of the group G6 can be found by direct integration

of K1lling’s equations, or by Schmidt’s method, or otherwise. It turns
out, using the Schmidt method, that one can always put the commutators

in the form

[,Y,i»}!j] = eijmgm' [Xi"}gj] = 5ijmf}§m
BioZ5] = €45ukln

When k¥ = 1, there are two simply-transitive groups of Bianchi type IX.
When k = O there is a group of Bianchi type I and a three-parsmeter
family of groups of type VIIO. When ¥ = -1, there are a two-parameter
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family of groups of type V and a three-parameter family of groups of
type VIL, [4] .

The upshot of the last two sections 1s that the Kantowski-Sachs
metric and Bianchl metrics exhaust the class of spatially-homogeneous
metricse.

4o The field equations of spatially-homogeneous cosmologies

441, Introduction and computation

The mogt obvious and important fact about spatially-homogeneous
cosmologies is that everything of physical importance depends only on
times Thus the field equations reduce 1o ordinary differential equa-
tions, and the initisl conditlions to the assigning of values to vari~
ous constants (rather that assigning functions on a hypersurface under
certain constraints). Such system of equations may be amenable to a
number of well-kmown technigues in the qualitative theory of differen~-
tial equations, in particular reduction to autonomous sgystems and study
of Hamiltonien and ILagranglian formulastions. These matters are dis-
cussed below. In this first section I aim merely to give the actual
forms of the field equationse. I have done the computation using Car-
tan’s method based on differential forms. One takes a basis G* of
differential forms and writes the metric as

ds? = g op G GP
Connection one-forms r‘“p are then defined by

4.1
46%=-T%, AGP (4-1)

indices being raised and lowered with Eap o The curvature two-form
is then defined by

® o o ¥ __‘} 3 X 5
Qp=dr ﬂ'*'r‘ x./\rﬂ/_:,—ER (3,5«56 AG (4.2)

If coordinstes have not been glven, then to guarantee thelr ex-
istance one wust use the condition

2 o e [ _
“ 6% =0 &> Rpys =0

which is equivalent to the Jacobi identity (2.4) for the dual basls
to G% . (The Bianchi identities, incildentally, are ere &= 0.) For
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Bianchi models, which includes all the models of Chapter 3 and the
Kantowski-Sachs metric (3.10), using the basis (w ®, at) with
as in Table III, we find

a

4 a _ g8 b 4 _ b
=0 CA,“eb‘t‘»)« » g =%
5, a se.d e d (4.3)
a [ e c
M, = o ,w (Cbc - €138 Cec = 8ca8 Cep) X
and the field equations become
1
Ra(&" qu“ETga@ +Agu(& (4.4)
. ab
whexre R44 = - O - QabG
b ~¢ c ~b
R4a = cC ba + € aC cb (4.,5)
) [o] 3
Rab = eab + %ab - 2&ac& vt Rab

)
Here 8934 = gt denotes Sy o, O,y = (£ g)ab = @t (gab)' o = eaa'
T =1"_ and "R,y is the curvature of the three-dimensional space sec—

tion which is

3 _ 1 e g ik g gfh
Rop = 7 Cer(CntE Bag * Bug® naf ) *
1 n gL fi 1 ~c ,ad £d (4.6)
e _1 e
+ N c fgc ijgaegbhg g o c da\(C cb ¥ 8cef c fb)'
Note that €,y and (9‘ b) = (£, 09 ab 2re tensors. The formulae ac-

tually look samewhat simpler if the values for G2 pe are substituted

in from Table I.
The second form I shall give for Bisnchi models uses the basgis

(3.3) ~ {3.6) and is

a 4 B
F =0, %= [Ma=9%
a a4 i a ¢ a _c
Eb=- eabdQ g * {-2-(8 e gt € gotag = 6bdcnca) +
d
- 2%y - apg’y | €
yielding
R, =~ &~ 6°P0
44 ab
cf, b b
R4d=£dbcn 9f~3€dab
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_ a i e f
R, = 6,9 + 08,4 + 20 (c 8d)ef + 26fe(cnd) av +

. (4.7)

£ e e e 1 e 12
+2n(0 Ngyr = B glleg ~ Scd(2aea +1 n.e -3 (n e) Ye

In this case we have to consider the Jacobi identities, since the g2

have not been given in terms of coordinates. If We use J{cxﬁ} to
denote the equation GA a 6P = 0, we find we have, as non-trivial
Jacobi identities,

J{a 4} : :ndbab =0

7{av} +3{va}:a®®-2m@e® od_ B8P 4 42% . 0
. (4.8)
g{ab} -3{va}:a + €%, - Sbcdacﬁd =0

‘ For the Kantowski-Sachs metric we calculate in the form (3.12)
using the basis (Xdx, Yae, Yf(€)dd , dt) and obtaining

4 _ 1 _% 1 4_ 2 _X 2
Ci=l4=5«y [e=Ti=3%

l:§= F‘z=-.§w3, and 4’?%:_;2:%%%3
as the only non-z’;ro I—'; . Thus we obtain
Ras =‘%“g§
miciee (4.9)
Rzz-%;-%'*i—in*v%-»%

as the only non-zero Ricci curvature components, where k = 1, 0 or -1
according as £ = sin €, © or sinh &,
If we write T“p =¢n,ng + 2n(°‘ 9@3) + p(gmp+ nd\np)*map

where qunm = 0, 97, nf =0, TJ*,=0, ‘JT°‘P= ‘:ﬁ(a.(a) then

[b
- + 3P .
Ry = 522 - A
(4.10)
R4d = -qd
Rab=( 2 )gab+ ELNS
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4424 Degrees of freedom

Having chosen the canonical forms of Tables I and III, the 12
variables ab and eéb are related by four constraints, namely G4a_ +
+ 1\.g4d_ = T4“_, Gd43 being the BEinstein temnsor., There is still one
degree of freedom in the choice of the initial surface, and a further
(9 - &) degrees of freedom in choice of the w™. If there are M mat-
ter variables, one has in general 12 = 4 = 1 =~ (9 = d) + M= M+ d -2
true degrees of freedom. However this result is modified in three
cases where the constraints are not necessarily independent namely
where the three formulae for R4b do not involve linearly independent
combinations of the €,,. Computing from (4.7) using (3.6) we find

R41 = ~ 28 (6’22 + 633) + 5-23 (nz - n3)
Ryp = 38 Gy + G435 (13 - ny)
R, = 38 653 + 6}2 (ng - n,)

-

where G,y = €, - % 6ggp (S0 Gy + 522 + Gz3 = 0)» The cases
n, = ng, ny =1, and ny = ng only arise if the full group is a G4, as
one can readily prove using (4.8). R42 and R43 give linearly depend~
ent conditions 1f (nz - ny)(ny - ny) + ¢, =0 di.e. if a # O and b =
= ~1/9, or if a = O and nzn3 = O. The first occurs in type VI -1/9
where R41 iz sti1ll independent, and the second occurs in types II
(where R41 and R42 are independent) and I, where none are independent.
If there are matter variabdles q, &8s in (4.10) linesr dependence
of R, imposes conditions on these and the total number of free vari-
ables is unaltered. But when the matter variables q, are, a priori,
absent, the number of constraints is decreased to 3 (types VI_1/9 and
II) or 1 (type I) and the mumber of free variables correspondingly in-
creasede To show how this works out, Table IV gives the number of de~
grees of freedom for vacuum, and for perfect fluid with energy-momen~
tum tensor

TO\p= Mlala +P(gup+uaup) (4.11)

where u, the four-velocity, need not be equal to ne In the latter
case we assume p 1g a funcition of ¢ and there are thus four matter
variables ¢ , u, (u4 being determined by the fact that u is a unit
vector) .

The results given here are due to Siklos [7]: /\ has been treated as
known, rather than a free parameter.
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Table IV. Degrees of freedom of Bianchi models

Type| T II VI, VII, VIII IX V IV VL VIL VI,

g |1 2 3 3 4 4 1 3 3(4) 3(8) 4
s |2 5 7 1 8 8 5 7 7(8) 17(8) 1

g=degrees of freedom of vacuum model. s degrees of freedom of fluid
model. The ambiguity in the columns for VI and VII arises from that
of ?jble II. The column for type VIh includes type III but not h =
S 9.

A similar snalysis can be made for the rotationally symmetric
cases of Section 3.2. For the metric {3.12) there are four variables
X, X%, Y, Y; Y is fixed except when £(©) = ©, but X can be scaled. The
field equations (4.9) imply one constraint in vacuum models, and foux
for fluld modelse The origin of time 1s 8 free parametex,.

For the remaining cases, there are still four variables but no
basls change 1s permitted in the Bisnchi VIII and IX cases, and only
a rescaling of ﬂh in Bianchi II and of Ez and E3 in Bilanchi V. Here
we are refering to the unique group of these types and ignoring the
one parameter families of other groups. There is one constraint in
the vacuum case and four in the fluid case, except for Bianchi V which
has two in the vacuum case. For these cases We arrive at Table V.

Table V. Degrees of freedom of the models of Section 3.2

Type Kantowski~Sachs ia 1 1te 2a 2b 2¢
q 1 1 2 2 0 1 0
8 2 2 3 3 1 2 2

q and s as in Table IV. There are in fact two solutions in case 2a
vacuum, but no continuous parameter: one of these golutions is flat
space in unusual coordinates.
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4.3, Diagonalizability

The simplest metrics are those where eéb, Taﬁg and n,, are si-
mzltaneously diagonal, and ggb = 0, in {4.7). The conditions undex
which such a form Is enfoxced by the governing equations have been in-
vestigated [21, 22]. The proof works by use of the R4a equations, the
Jacobl identities, the Blanchi identities and lastly the Rab equations
(b # c)s This route breaks down in types I, II, and VI (h = =1/9) be-
cause of the linear dependence of the R4a equationse.

Lemma 4: In class 4, except types I and II, the condition 9, = O im-
plies ng,, T, and &,, are diagonal and 526 = O

Proof [21] : Ryq = O implies n,3(6, - 85) = 0, using a basis (3.3) -
(3.5) chosen so that 8., is diagonal. So either ny; = 0 or &, = 65
In the latter case the basis is not yet fixed and we can impose Doy =
= 0 as a further condition on it.

Cyclic permutation implies n,, can be taken diagonal. Then
J {12} +d{21} yields (n,, - n11)§23 = 0. Thus if n,, £ T4,
Q5 = 0. If ny, =mnyy then J {11} and g {22} give 84 = ©,, and
we can impose (2 = O as the restriction on the still indeterminate
basis. Cyclic permutation of this argument yields () p = Oe

Finally R4 (c # d) can be evaluated. It is zero and thus 77 4=
= QO
lemmg 5:¢ In Bianchi types I and II any three of the conditioms i) LT
diagonal, i1) ®,, diagonal, ii1) st diagonal and iv) 24 = 0 imply
the fourth.

Proof [21] ¢ As in Lemma 4 n_, and €, can be taken to be simulteneous-
ly diagonal. Then (24 = O if and only if R,g = O (c # d) which in
turn is true if and only if 9T , = O, using residual freedom of rota-
tion of the basis (3.3) if necessary.

Lemma 6: In class B, except type VI (h = ~1/9), 4y = O implies a, is
en eigenvector of €,, and ST, and is parallel to QQd.

Proof [21]: Use the basis (3.3) - (3.6). Then Ryp = Rys = O gives
Gyp = 645 = O and R*P= 0 glves 91, = Tq5 = 0o Then J {12}~
J{21} and J {13} - J{3 1} give Qo= Q5 =0.

Lemma 7: In class B, except type VI (h = ~-1/q), if Tup s €., are si-
muiltaneously disgonal and (2, = O, the space-time is elther rotatio-
nally symmetric, ox naa = 0, or the matter content is physically un-
realistic.

Proof [22]: Use the basis in which a, = (a, O, 0) and &, is diagonal
(this exists by Lemma 6). Then J {a 4] gives nyy = Dy, =Nz =0

R23 = 0 gives (n22 - n33)a + (nzz + n33) nyg = 0
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The time derivative of this gives
(62 - 93) (n22 + n33) a, + (n22 - n33)n23 =0

g0 elther i) (ny5 ~ n33)2 = (n22 + n33)2, whence nyolzz = 0 so (with-
out loss of generality) take Nyy = 0 and then R23 = 0 implies either
Nz = n""{il = 0 ora= Doze In the latter case R14 = 0 gives eﬁ = 6»22
and Rﬁ = R22 and hence T 11 = Wooe This model is rotationally sym-
metric oxr ii) 9, = €. Then R14 = 0 gives €, = 6, = Og. If L is de~
fined by & = L/t, all the n,; and a, are proportional to 1/t eand
thus Wab is proportionsl to L—z, but this violates the "dominant
engﬁgy" condition at large { unless ‘!'L'ab = 0, which gives 3Rab =
3 Eab implying the three-spaces have constant curvature and thus
the models are Robertson~-Walker.
It may be noted that the result of Lemma 7 is true for type VI

(b = =1/9) but the proof [22] is more tedious.

4e4s Restrictions on the matter comtent

The ideas of Section 4.2 and 4.3 can be re-worked to show that
diagonal metrics (where n,, and 8, are simultaneously diagonal) al-
ways have qy = 0 in Class &, In type I, qy, = 0 always and in type II
qy has only one free component. In the models of Section 3.2, only
the type V case, 2c, allows gy £ O,

King and Ellis [1Z] have extensively investigated the case of a
perfect fluid with u # n. In this case they wrote

coshd + ¢ sinh ¢
coshd - ¢ sinh &

e

(4.12)

W

n =
P

where ¢, & are spacelike unit vectors orthogonal to p and u respective-
ly. The homogeneity implies that ¢ is a function of t alone =0 we
can write ¢,, =~ Pn,.

Taking the energy-momentum tensor to be (4.11) with p = p(M)

we find
M.’mu‘“ + (4 plu* =0
( o+ p)u°‘;(5u’3 + (g°P + u*uf)p,, =0
So, defining

W=6Xpy%’%'¥ ’ r:expj—ﬁ%



41

the integrals being taken along the worldlines with initial values in

a surface of homogeneily, we have
cosh ¢ (log w)‘+'u“;«,= o (4.13a)
sinh @ (log T)"co + Wa;pu® =0 (4.13D)
where °* denotes d/dt as usual. Thus
a
u®auf = tanh ¢ 3%(11{55/3)0“ (4e14)

this shows that in a tilted universe u®;4 # O (expansion of the fluid)
implies elthex u“gﬂ,u@ # 0 (acceleration) or dp/dm = O. Substituting
the formula for u into the equation (4.13) yields

(log (r simh & ))* + c“empcﬂ =0

so that tilted models stay tilted.
The vorticity of a fluid is glven by the vector

1 5
3 r?dﬁsx

o
w = Up'ux,ss-

(see e.ge [23, 24] for an introduction to relativistic fluid dynamics

in cosmology). Since Mg = 0, and cb,p » p and up are coplanar,
this gives

W %= -21 sinh <& dergu pc I8

Because ™ u, = O we will have

w*n , cosh d + wWicysinhd = 0

so w* is given (when & £ O) uniquely by the components W, which
are In turn given by the components of £ abeeca.b] (where Latin ine-
dices refer to a basis in the orbits). These can be written in terms
of

ed edf

(n%cy + €% e a,) (4.15)
From this expression, we can deduce the following:

a) Bianchi type II models have zero vorticity, and velocity
(from (4.5)) in the plamne of u and the elgenvector of n,, With non-
zero elgenvalue.

b) In Class B models, if a, and cy are parallel, w%= O,

¢) In Class B, if a, and cy are not parallel, w%= 0 can only

occur in Bianchi type III.
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d) In Bianchi types VIII and IX, +tilt implies vorticity.

e) In Bianchi types VII and IX, ¢ and « cannot be orthogonal,
and hence w®n, # O.

f) In Bianchi type V, ¢ and > axre orxrthogonal, while ¢ and
can be non-zero and orthogonal in Bianchi type IV (this regquires two
eigenvectors of L with zero eigenvalue). In this cases w2 1s or-
thogonal to pn, g, and C.

g) ¢ and w2 are parallel and non-zero only if abcb = O« Pure-
ther investigation shows this can only occur in Class A golutions with
¢ an eigenvector of Dgpe

h) The only tilted models with a G4 on spacelike surfaces are
the Bianchi V models,

A11 these results are given by King and Ellis [12].

Another form of energy-momentum that may be considered is a Max-
well electromagnetic fileld. Mexwell’s equations read (in terms of the
usual electric and magnetic fields as seen by an observer with veloci-
ty n®, and using the basis (3.3) - (3.6))

b s
2Eba =J"n

oL
a H” = 0
Cye .C ¢ b ¢ cd ceb
(E°)* == + 0B - 88" + n"Hy + £ a _Hy
dy e c 0 ¢ cd ceb
(H")* = e-dH - 8" -~ n Ed - & aeEb.

We see that for a puvre magnetic field,

bo_
abH =0

dy

n®H, + £°%Pa Hy = O

which shows that no field is possible except in types I, II (2 free
components), and IIT, VIO and VII {1 free component). This result

is due to Hughston and Jacobs [25]; see also [26]. Similar considera-
tions apply %o massive vector-meson flelds [25] »

The other forms of anisotropic stress that can arise derive from
either a kinetic theory treatment of some particle distribution, or
from an approximative treatment of gravitational wave fluxes (at least,
those are the cases considered in the literature). I therefore leave
their discussion, apart from the broad restrictions above, to the other
lectures.

The Kantowgki-Sachs metric cannot be tilted and only one compo-

nent of Hb can be non—=2ero.
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4.,5. Lagrangian and Hamiltonian forms

The Einstein tensor can be derived by varying gup in the La-

granglan action
I-= S\R\f -g a*x (4.16)

Wherefg_' is the determinant of &« o If the energy-momentum tensor
can be derived from a Lagrangisn form also, then one will have a com~
pletely Lagrangian description.

Misner intreduced idea of taking the Lagrangian (4.16) and in-
tegrating over the spatial variables in a spatially-homogenecus model

(taking the spatial volume finite) to obtain
I-= JR ~g'dt (4.17)

where R and g now depend on % alone (i.e. here & op is refered to a
group invariant basis)s This was used for Bianchi types I [27] and
Ix [28], and the corresponding Hamiltonian formulation was introduced,
for type IX [29], and used extensively, sce ee.g. [34]. Several sue
thors attempted to generalize the technique to other Bianchi types
[30, 5], tut it turns out there is a smag. I myself, and independent-
ly Estabrook and Wahlguist, found that the generalization of (4.17)
to types of Class B did not in general seem to work. The reason for
this was suggested by Hawking [31] and given in full by myself and
Taub [32]. Informed of our work by Ehlers, Rysn checked the Hamilto-
nian form and found the same diffilculty, but owing to an error ascribed
the result to the wrong cause [53]. It was already known, also, that
there were certain speclal cases of Class B, namely those in which,
in terms of (3.6), naa = 0, where the Lagrangian treatment can be ap~-
plied, and Taub and I [32] had tried to analyze the ways of amending
the Lagrangian to make it work. Unfortunately, in doing so, I had
miscalculated and given an incorrect statement. This amusing history
of successive errors ends (at least for now!) with the work of Sneddon
[35], who corrected all the errors mentioned snd gave a clear proof
showing why the method can be made to work for the naa = 0 cases,
After all that historical information, I must now explain the
problems Rather than repeat all the tedious algebra, I shall use a
slmpler example. Consider a,éegrangian action

I= j f(X9Y’Y‘)dX
Xy

where y° = Jy/dx, and the variation &I = O for an arbitrary varia-
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tion Sy in ye

X2 Ay
9 .
gI = Xa:g(% 33" + %ﬁ_—,gy )dx = [%’ Sy] +
2 p) %1
+;f W (3% - = (ai))
4

where the first term denotes a definite integral. To obtain the usual
Euler-lagrange equations one must remove these boundary fterms. Usual-
ly this is done by setting 5y = 0 at X4 and Xos but the alternative

is to impose the "natural boundary conditions" f/9y’ = 0 at x, and
XZ.

The analogy is that in using the Lagrangian (4.16) one varies
over a four~-dimensional region, with the variation Sg‘,@ set to zero
on a three-dimensional boundary. However, this cannot be done in a
spatially-homogeneous way, because if J&gop = O on the boundary it
is zero for every t and hence zero everywhere. Therefore one can only
use the method, with spatially-homogeneous variations, when the natu-
ral boundary conditions are satisfied. These turn out to be that the
group is Class A.

When the method fails, (4.17) will give

81 = S(E“ﬁ‘ + V) Sgupdt

where E ®P = 0 are the Einstein equations, and V “Pare the unwanted
additional terms. By taking a suitable basis of §gup s considered
as a vector space, one can arrange that only one component of V <fis
non-zero (1t was on this point that [32] went wrong). Thus there is
one incorrect equation, which can be corrected by imposing the true
equation as a (non-holonomic) constraint. The remaining issue is to
discover all cases where this constraint becomes holonomic. The n: =
= 0 cases do belong to this category. Dr. M. Francaviglia has sug-
gested these may be exactly the cases Whexe it is possible to find s
compact global topology fox the space sections without losing global
homogenelty.

T shall not give the most general forms of Lagrangians (for which
see [34]), tut treat only the case of Class A models in vacuume Then
if we write

gap(t) = €22 (2P 1y (4.18)

where gy is diagonal (by Section 4.3), and (8, is a diagonal trace-
free matrix, we can express the result in terms of J, /3+ and 3 _



where
3 -
Bay = dlag (B, '2'@—"%9 %:/d-‘ @2-:")-
We find a Lagrangian
1= PR+ 642~ 2 (A2 + 42))

where the scalar curvature of the three spaces is

-2
R = - -;i (Nf P 42 @+(N29V3‘/3-_ Nse"ﬁ‘pjz -

- 2N (3+(N2e1f3_‘f~’>—,,, N3e‘ﬁf5-)) + % NyNoNo (1 + N N,N,)

with N,, N, N. as in Table I. Using 2 as a new time-variable this
hes the form of the lagrangian of a particle in a two-dimensional po-
tentizl which has exponential behaviour and is contracting as ) in-

creases. Some sketches for the non~trivial potentials of types II,

vI,, VI, VIII and IX ere given as Figs. 1 ~ 5.

4.6. Autonomous systems of equations

4 system of ordinary differential equations is said to be auton-
omous if it takes the form

& = (w

where x 1s some n-tuple of variables and f some n-tuple in x, inde-
pendent of A o« The evolution then follows a cuxrve in X~-space whose
principal features can be found by a study of the geomelry of the vec~
tor field £, in particular of its zeros and singularities.

4 plane autonomous gystem is one in which x-space is a plane.
Well-known results due to Poincare and Bendixson mske this case very
easy to treat. Tables IV and V reveal the following possible cases,
which may be treated.

Pype I with fiuid [36][37] (including A £ 0)

Type II vacuum [36]

Kantowski-Sachs with fluid [17][38]

Type II, rotationally symmetric, with fluid [3€]

Type III, rotationally symmetric, with fluid [3€]

Type V, rotationally symmetric, with fluid [39] [40]

Most of these have been treated by Collins (see references) and a few
by others. The type I models have also been treated with magnetic
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Pig. 6, Evolution for Bianchi I
fluid models with A= 0 and
1< y<e.
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Pig. 8. Evolution of Bilanchi type
VI, model (n%= 0) with fluid,
4<(1 = 3n)(3 y=2 )35 the outer
region shows the Kantowski-Sachs
evolution which Jjoins mnaturally
on to type III(n%s= 0) which is
type VI, {(n=
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Pig. 10. 4s for Fig. 9 with 4/3 < y<a.

Pig. 7. Evolution for rotatio-
nally-symmetric type II model
with fluid 1< b < 2,

(a
H<7<

)
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Pig. 9. Evolution of type V
rotationally-symmetric tilted
fluid model with 1 < y £10/9.
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field []A], with rotational symmetry and free neutrinos [}2], and with
a fluid in which p = p( u, ua;a>, i.e. with bulk viscosity [43]. The
further important group of cases are those with naa = 0 where the ex—
tra cases (types VI, and VI,) turn out, with perfect fluids, to have
2 free variables. These were studied by Collins also [36].

To turn the equations into plane autonomous systems, it is best
to use the A of Section 4.5, a density variable {2 =3 ?/92 de-

scribing the dynamical importance of matter, and a variable defined

by
L Y

where & 18 the chear. These parameters have been renamed, and changed
compared with the original papers so that ) proceeds In the direc-
tion of cosmological expansion and (D is the same as the density pa-
rameter now generally used in FRW models. % will be doubl-valued

if the universe recollapses. A model ig FRW if B3 =0 throughout its
evolution. It 1s matter-dominated when (D0 = 1 and matter is negligi-
ple if () = 0, Pigse 6 - 10 show some examples from the various cases.
In these the fluid obeys

p=(y-Du (4.19)

The type VI, fluid n®, = O case and type VI, fluid with n®, =0,
4 >(1 = 3n){(3 ¥ - 2) with Yy <2, have similarities with Fig. 7. A1l
types show structural instability with respect to Y~ at y =2 [36].
In the type V rotationally symmetric titled fluild model there are fur-
ther instabilities at ¥ = 10/9, 6/5 and 4/3 [39]. To illustrate
thig I give two of Collins’ diagrams as Pigs. 9 and 10, In these fig-
ures, the filled dotes are endpolnts of evolution and the horizontal
axis V represents the "angle" used in (4.12), by V = 2/(1 + tanh24>).
Note that V <1 corresponds to a stationary region in which na, the
hypersurface normal, is spacellke.

The system which cannot be reduced to the plane autonomous case
have been studied, at least for some cases, by Bogoyavlenskii and No-
vikov [44]. Their works is too detailed to be usefully summarized

here (though it will be referred to later).

4eTe Exact solutions

4 large number of exact solutions are known. The table given
in [éé] is now out-dated, and a full account of the solutions will ap-

pear in a forthcoming book by Stephani, Kramer, Herlt and myself. The
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work for this book is not completed at the time of writing, and so I
give here a table that wmay prove incomplete. I do not think the full
details of the metrics can be appropriately glven here, so I give only
references to the original literature. I shall ignore FRW solutions.
In the following G denotes & general solutlon, S a special case.

Solutions with Gy
Type I (VII ): vacuum: Kasner [58] y Taub [59], Fhlers and Kundt [60]

Type IT:

with A £ 0, G.
dust: Saunders [61] with A;é 0, Heckmemn~Schucking

[62], Robinson [63], Doroshkievich [64], G.
nrediation®: Doroshkevich [64], Shikin [65], Thorne
[66] , Stewart [67] , Kompaneets and Chernov [19], G.
other fluids: [64], [6€], [67], G.

magnetic fields Rosen [68], [64],[67], [65] , [66], @.
megnetic field plus fluid: Jacobs [69], [64], G.
vacuum: Taub [59], Newman et al. [70], Stewart [67]with
A# 0, Carter [71, 72], Cahen-Defrise [73], G.
dust: Collins [36], S.

rradiation® and other flulds: Collins [36], Maartens
and Nel [74], S.

Type III and Kantowski~Sachs:

Type Vi

Types VIII and

vacuum: Kantowski and Sachs [16, 18], Ehlers and Xundt
[60], siklos [14], Cahen and Defrise [73], G. Cen have
/¥ 0 and a Gg.

dust: Kentowski and Sachs [16, 18], with A £ 0, Kome
paneets and Chermov [19], G.

radiation: Kantowski [16]

others: Kantowski [16]

magnetic field: [64], [66], [67], with fiuids

vacuum: none

dust: Parnsworth [75] with $ilt, G.

fluid ( Y = 2): Maartens and Nel [74], Wainwright, Ince
end Marshnan [76], S.

electromagnetic field and fluid: Melvin [77]

IXs

vacuum: Taub [59] - NUT [70], with A £ 0, Stewart
[67] , Carter [72], etc. G.

fluid: Collins, Glass and Wilkinson (unpublished),
Maartens and Nel ( y'=2) [74], s.

electromagnetic field: Brill [78], [73], .

field and fluid snd A : Ozsvath [79], S.
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Metrics with o G3 on a spacelike sections

Type

Type

Type

Type

Type

Type
Type

I: vacuum: Kasner [58] et al. (see above), G.
dust: Saunders (61] et al. (see above), Raychaudhuri [?d],G.
radiation and other fluids: Jacobs |§1], Hughston and
Shepley [éf], G.
magnetic field: Rosen [68, 82], [69]
magnetic field and fluid: [69]
nagnetohydrodynamic: Ozsvath [§3], Se
electromagnetic: Barnes [84], S.

II: vacuum: Taub (59], G.
dust and other fluids: Collins [36], [85], Maartens et al.
[74] , Wainwright et al. [76] (p = p with $i1t), S.
electromagnetic: Barnes [84], S.

IV: wvacuum: a special plane wave (Siklos [3{], Harvey and Tsou-
belis [86])

V:  vacuum: Joseph [124], Ge
dust: Heckmann-Schucking [62], G.
other fluids: (in principle), Ellis et al. [4], Hughston et
al. E?ﬂ

VI,: vacuum: MacCallum [4], S.
dusts MacCallum [4], Se
other fluids: MacCallum [4], Collins [36], Dunn snd Tupper
B8], s.
electromagnetic field and fluid: [88], S.

VI, (h £ =1/9):
vacuum: special plane waves Siklos [14], MacCallum [4],
Collins [36], S.
fluids: Collins [36], Wainwright et al. [76], s.
electromagnetic field: Barnes [84], S.

VI, (h = ~1/9):
vacuum: Petrov Type IIL: Collinson and French [89], Siklos
[14], s.
A# 0: Petrov N, III and II solutions, Siklos [14], S.

VIIO: fluid: Demianskl and Grishchuk [PQ], Se

VIL,: vacuum: special plane waves Slklos [343, Tukash [9{], Se
flutd (p = u): Wailnwright et al. [76], Barrow [92], S.
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5. Bffects of geometry on the evolution

51« Singularities

The singularity theorems due to Hawking, Penvose and others [45]
guarantee that the spatially-homogeneous models possess singularities.
In fact some timelike geodesics must be incomplete, provided that
Rup k*k® >0 for all timelike and null vectors k and the Cauchy
problem has a unigue solution ([45], page 147).

From (4.7) we see that if the matter and spatial curvature are
both negligible, the solution approximates a Bianchi T vacuum metric,
These are a one-parameter family (cf. Table IV}

ds? = - at? + t2P ax? + t24 dy2 + t°T ag? (5.1)

where p + ¢ + ¥ = pz + q2 + r2 = 1. Except in the special cace where
p=1, ¢g=x=0 (and cyclic interchanges) this Kasner metric has a
real singularity at ¥+ = €. It 1s of the "cigar" or "line" type, be-
cause a co=-moving region which is spherical at t = t1 >0 Dbecomes in-
finitely long and thin as t —» O. The special case p = 1 apparently
gives 8 singularity of a "pancake" type, where the spherical region
becomes an infinitely thin disk, but the metric is actuslly just flat
space with unusual coordinates. This will become a true singularity
when the matter content i1s considered.

This simple approximation suggests that Bianchi universes have
"big-bang" singularities. Using an Bianchi V medel with rotational
symmetry, Shepley showed that another possibility exists [46]. This
is the presence of a "wimper" 133] or "intermediate singularity" or
"non~scalar® [4{} singularity, one at which no curvature invariant be~
comes simgular, but at which in a frame parallelly-propagated along
a geodesgic hitting the singularity, the Riemann tensor components di~
vergee. In our universes, such a possibility 1s agsociated with the
surfaces of homogeneity becoming null. The {(null) hypersurface-nor—
mals n are still invariant under the group, and a Killing vector field
Y agreeing with n at one point p in the mull hypersurface will obey

fxlf’lv*—‘ 0 = £E'Y‘"

So Y will be parallel to n af all points on the null hypersurface gene-
erator ) starting at p with tangent vector n. We have

n®pnf = -(y+ Fins
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{using Newman-Penrose notation) and thus if s is affine on A and
Y= /v we find, taking k as geodesic on A

n® = (y+ ¥)sk®™ = SOy + YV e

So et 8 = 0, the components of the Riemann tensor in a tetrad paral~
lelly-propagated with respect to k become divergent (they are constant
in the group-invariant tetrad using nj).

The possible cases Were examined by Ellis and King [13], Collins
[39] and Siklos [7]. The examples shown in Figs. 9 -~ 10 include mod-
els which cross a "wimper" type null surface at v = 1. The most re-
cent work ['7] indicates that "wimpers" only occux in a special subset
of all models. The proof uses a null tetrad invariant under the group
with n © as a hypersurface~normal and F A tangent to a family of null
geodesics. The remaining vectors m, W of the Newman-Penrose [14] for-
malism are also invariant and hence any connection coefficient & 1is
invariant under n, m and @ i.e. in Newman-Penrose notation it obeys

ACI): Sd):g@:()

This drastically simplifies the NP equations. Using the commutators
of ﬁ, n, m and @ shows that

D2l = (y+¥)- (& + E)e2n
0 = a + ﬂ - Jp—(
M= P
on the null hypersurface, where the hypersurface normals are parallel
ton o + e—ZQLm throughout the region consldered.
(Note on the NP formalism: We use the signature (-, -, -, +)
here, and {o"nOL =1 == m%fHy?: all other cross-products are zero.

Writing e =m, e = Hy &5 =1, & = ! the independent conmection
formg can be expressed as

["3 =/uw1 +Agg_2 +v,@3 +*Ir,qg4
[ =-30' -Fu®-Tw?-Rw!
- 2 4

r‘i ig real and l"',} imaginary.)
’fheorem 7¢ Class A whimpers are impossible If

CP22 =R D()r?,n"‘nf'*’ >0
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Proof: 7 Calculation shows the group in Class A if p= 0o The NP
equation (n) gives a contradiction.

Siklos [?] has proved that there are only three disjoint two~parameter
families of vacuum Whimpers. Thus the whimpers are not the general
case (which needs a four-parameter family). Two of the three cases
are the Taub-NUT models and plane wave solutionse. The proof is read-
11y generalized to fluids [7]. It rTuns essentially as follows.

There are 24 real parts of the spin coefficients, [“i. The NP
equations give Dl"i for 18 of these, and give 8 of the 10 real compo-
nents Y i of the conformal curvature tensor; the remainder are con~
gtraints. The missing D{"i are fixed either by choice of tetrad or
through the commutators. The missing u}i are given by a Bianchi
identity. There remain 14 constraints on the 24 F’i. 8 of the 10 re~
waining free values are, or can be, fixed by choice of tetrad, leading
only 2 free. Detalled algebra glves all possibilitiese.

Thus we are left to consider the "big-bangs" as the general case.
(This is easy to show for the Kantowski-Sachs models [ﬁi]). A full
review of the arguments hag been given by Collins and Ellis [98]. We
migt now consider the approach to the singularity.

Pirst suppose that the energy-momentum has negligible effect,
and let us consider just the models with a Lagrangian form. TFrom Pigs
1 - 5 we can see that the evolution can be approximated in such cases
by a sequence of the following periods i) pericds when 3R is negligi-
ble and the behaviour is like (5.1), 1i) perlods when an exponential
wall, as in Fig. 1, is important, iii) periods when a corner chammel
(as on the left of Pige 3) is important. The behaviour in period ii)
is given by Taub’s vacuum Bianchi II solution. It gives a law for
passing from one period i) to another (these are generally called Kas-
ner epochs) with a change of parameter. The period iii) has been
studied by numerous suthors. The model is eventually reflected (to
the right in Pig. 3) after numerous eoscillations. Combining these
elements, Belinskii, Khalatnikov and Lifschitz [100, 48] have given
gqualitative descriptions of the evolution of Bianchi VIII and IX uni-
verses, in terms of a series of Kasner epochs with changing parameter
end therefore two length scales osclllating, punctuated by runs up
corner chamnels and permutation of the axes of oscillation. The rig-
orous methods of Bogoyavlenskii and Novikov [44] show that this qual-
itative description is justified and it 1s also confirmed by numerical
work [49]. Belinskii et al. [48] have gone on to argue that the behav-
iour found is in fact typlcal of a general class of inhomogeneous
cosmologles (essentially found by letting n_; and a, be functions of
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spatial position but slowly-varying)e. This work has come under heavy
criticism from J. Barrow and F. Tipler (unpublished) and it has been
suggested that in any case it represents only a second approximation
to the true generic big~bang. Further investigation is required, and
will undoubtedly be undertaken.

We have now to consider whether the matter really is negligible
near the singularity. This will cerbainly not be true In the extreme
case p = M , but there are other special solutions where it is not
true. The first of these was noted by myself [5], and more were found
by Collins. In Fig. 7 there are two such solutions, one at the focus
of the evolution curves, and the one starting at Q =1, 3'= 0.

In type IX tilted models the matter terms contribute extra po-
tentials [11, 34] which, as the singularity is approached, confine the
solution to one of six congruent areas of Pige. 5 [5@]. The type VII,
solutions are similar to the type VII  case [51] , vecause although
there is no Iagrangian form, the fleld equations actually differ only
by the addition of a simple term negligible near the singularity.

5.2+ Isotropization

It is very difficult to define the requirements on a model in
terms of isotropy. Wunat one really requires is just that no conflict
with present-day observation arises. Beyond this, judgments are aes-
thetice One criterion that gives an interesting aesthetic argument
ig to congider the evolution of those models which expand indefinitely,
and then demand that they approach FRW behaviour (il.e. 6/¢ —= 0,
T4a/T44—-- 0, and f3_, —> constant). Collins end Hawking [52] have
proved that this is only possibdle if 3Rab approaches isotropy. The
suggestion for this arose from the fact that it is cleaxly true in the
cases described by the Lagrangiasns. The proof requires two steps a)
to show that T“‘ e(2+€ A0 for any & <1, and b) to use this.

The first step follows from the Biasnchi identities, and the second

from the Rab equations. Both require the dominant~energy and positive-
pressure assumptions, which in terms of an orthonormal tetrad, may be
expressed as, respectively, | 144 > |2 >R| ana | Taa' > 0.

Of the remaining possibilities (namely the group types which in-
clude exactly PRW models), type VIIh turns out also to be unstable
[52]. The only "general® Bianchi type (in the sense of Section 4.2)
remaining is type IX, which does not expand indefinitely but collapses
to a second singularity. Thus one can say that in general the long-
term effect of the curvature terms of the hypersurface geometry is to
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force the ever-expanding models to be anisotropic, in the far future.
However [5{] they can still be compatible with observation at the pre-

gent epoch.

5.3« Concluding remarks

To wind up, I would like to go beyond my brief and bring in some
more physlcal considerations.

There are three or four sources of evidence concerning the ac-
tual anisotropy of the universe. Direct measurements of the present-
day shear give very weak limits [53] » The microwave background iso-
tropy, which is very precise, is determined by the integrated effect
over the time since the radiation was last scattereds If the shearing
is monotone throughout this period, very strong limits on anisotropy
can be derived, of the order of 107> downwards [54]. I think these
could be evaded (if implaﬁsibly) by assuming an exact number of cycles
of oscillation have occured ingteads The third source of evidence
comes from primordial element formation. This occurs in a very short
time and is highly sensitive to the rate of expansion during that pe-
riode This rate itself depends on the amount of shear, and Barrow
[bi] has estimated, again, assuming monotone behaviour since the ele-
ment formation epoch limits of the order 10~7 or better, cf. [56].
Pinally, one may consider the entropy [57]. The idea here is that any
dissipative process which removes the anisotropy must simultaneously
increase entropy, and from this point of view the observed entropy is
remarkably low, implying very low anisotropy at all epochse There are
various physical assumptions in this argument, e.g. that the expansion
really is associated with energy in the usual sense and that this en~
ergy ends up in the thermal egquilibrium represented by the microwave
background.

All these considerations suggest that the hypothesis of chaotic
cosmology can only be fulfilled if dissipation occurs very early in-
deed. A theoretical argument shows that the process must be an odd
one, if arbitrary anisotropy is t0 be removede This is that any sys~
tem of regular differential equations has a unique solution. So by
setting initiasl date with a large presenti-day shear, and integrating
backwards in time, we could find conditions, at any finite %, giving
rise to a model universe incompatible with observation. Thus the pro-
cegsses required should not obey regular differential equations. Of
course, the initial big-bang is a point where the governing equations
of our models becomes singular, so0 the wmost likely possibility is a
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process that continues from the initial singularity. DPhis of course
must involve quantum mechanlcs, and here is another speculative area
of physics, but one which is belng energetlcally explored.

My own opinion in this is that the various points remarked in

this chapter make anisotropic models, except as perturbations of FRW
models, implausible.
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CREATION OF PARTICLES BY GRAVITATIONAL FIELD

Ya.Be Zel'dovich
Institute of Applied Mathematics, Academy of Sciences USSR, Moscow

I would like to review recent work on the problem of creation
of paxrticles by gravitational field but without going into all the
technical details. ZEverybody who wants to work on this problem should
read original papers (see reviews Parker (1977) and (1979), Isham,
Penrose, Sciama (1975), Starobinsky, Zel’dovich (1979)). In my lec~-
ture I will concentrate on general principles leaving out many formu-
las and derivations.

We shall use quantum theory to describe particles (electrons,
neutrinos etc.) and fields, for example scalar and electromagnetic
field, in a classical space~time. This means that we assume that the
gravitational field or in other words that the metric of space-time
is well defined. It does not imply however that we know the metric
exactly. The back reaction of created particles can deform space-time
in a complicated way (Wald (1977)) bvut let us assume that we know the
metric as precigely as is necessary and the metric is not restricfed
by any uncertainty principle. Uncertainty principles apply only to
particles and fields. In other words the gravitational field is
treated classically, it is not quantized. One can go a step further
and decompose the metric into a smooth part comnected with matter and
an oscillating part describing gravitational waves. Gravitational
waves can be quantized and in natural way gravitong will emerge. In
thig way we quantize small perturbations of the background metric
treated as a classical fielde The new and very interesting possibil-
ity is connected with excitations leading to changes in topology, they
cannot be treated by perturbation theory.They appear only in nonlin-
ear theories and general relativity is indeed a nonlinear theory. In
the classical case these excitations are represented by particle like
solutions (solitons), in the guantum field theory they are represented
by solitons in a non-physical Euclidean space-time (with imaginaxy
time) and they describe tunneling between degenerate vacua. In that
case, they are called instentons. Unfortunately here I will not be
able to discuss these new developments, We will consider only linear
field theory on a curved space-time.

Theory of quantum creation of particles by a classical gravita-
tional field can be formulated in three stepse. In the first step one
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studies wotion of point-like test particles in a given metxric. Test
particles move along geodeslcs so one has to study geodesics in space~
time., In the second step one formulates a theory of classical fields
in a given space-time, for example one considers a classical electro~
magnetic field in a curved space-time. Finally in the third step one
considers the quantum field theory on a given curved background, for
example one can gquantize an electromagnetic field in a given metric

{ Sexl and Urbantke (1967)). It turms out that the mathematical basis
needed for the gquantum description of flelds is almost the same as
that needed for classical field theorye. The final step is easy and
formilating quantum field theory one is guided by fundamental princi-
ples but they should be always clearly stated and well understood.

Let us begin with the second step, and consider classical elec-
tromagnetic field in a given space-time. We will take a metric of the
following type: for t < t; and t > t, (with t, > t;) the space-time
is flat and is described by the Minkowski metric, and for t, <t <t,
the metric is perturbed and non flat. We assume that we know the clas-
sical solution for t < t1 and we denote it by Ei and H In the
region t1 <t <:t we have some fields T and H, and for t >'t2 we
have ﬁo t and H out® The "in" fields can be decomposed into gsimple
harmonic waves. We cannot do that with the fields E and H. If we
know the value of fields at t = t2 then we also can decompose the "out"
fields into harmonic waves. The classical theory of electromsgnetic
field is linear, therefore we are sure that if we multiply the "in"
fields by a constant a then the "out" fields should be also multiplied
by ae So if initially we had vacuum (& = 0} then in the classical
theory we get the vacuum in the out state. In the classical theory
particles are not created from the vacuume On the other hand we have
the correspondence principle, which states that quantum theory for
large values of occupation numbers (a strong electromagnetic field)
goes over into the classical theory. ILet us assume that the curved
metric is such, that the outgoing field is stronger than the incowming
fields If initially the number of particles or photons was n then fi-~
nally we can observe another number of particles, so the classical
theory tells us that creation of particles is possible but not from
vacuum, one needs for that non-zero initial fields. As long as we are
in the framework of classical theory we know that, normally, in flat
space, creation of photons is possible when some charges oscillate butb
in gravitational field new photons could be created even if charges do
not oscillate. In this case the rate of creation of pairs of photons
is proportional to the number density of already existing photons.
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Thie is well known snd it reminds the baglc principle of lasers.

27“0 = :71¢V

ﬁi‘4o = 57,‘g t ‘3;40

(7“0 = 7&\)

Fige. 1. Sandwich type space-time with Minkowsikl space-time at t < 4
and t >1t, (%, > t,) and perturbed (curved) space time for %, <t <%,

Now let us go to the quantum theory. In quantum theory ® and H
are represented by operators, and if you consider the scalar field
@(t,%) then « and @7 are operators just as in quantum mechanics
position x of a particle and its momentum p = wx are operators. Quan~
tum field theory is similar to the theory of many particles with co-
ordinates of a particle corresponding to a value of the fleld at a
given point. I am not going to discuss the formal structure of quan-
tum field theory (see Schwebexr (1961), Bjorkenm, Drell (1965), Bogo-
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liubov, Shirkev (1959)). Let me only recall that the overall energy
of a scalar field oxr electromagnetic fileld is given by

1
Imoo av = Sy + D) Ry (1)
k
and different occupation numbers . correspond to different states of

the field. Now one can write

k. k,
Too = Z(nk + -;-) ’fmq{, Tyy = Z‘ (n, + %) _.wlkJ (2)
X k

where k; is a wave vector of the k-th mode. Therefore as a result of
introduction of operators and application of rules of quantum field
theory we obtain the particle picture of the fleld. ZEnergy of the
field is a sum of energies of particles and the energy momentum tensor
is a sum of contributions of particles. Existence of photons and par-
ticles is a natural result of the quantization procedure - of intro~
duction of operators and commutation relations of fields in the Min-
kowskl space.

We obtained the notion of a "photon as a particle" and a parti-
cle picture of the electromagnetic field. Different occupation num-
bers (numbers of photon) correspond to different states of the field,
The vacuum is by definition the lowest enexrgy state, therefore the
vacuum corresponds to all n, = O. We see that quantum field theory
leads to a strange result: the energy density of vacuum is not zero,.
It is lowest, it is minioum in comparison with other states but it is
not zero. Energy of the vacuum is given by ‘2;%-fluok and since in
general number of gtates ie Infinite it is a divergent quantity. This
fact is harmless in laboratory physics, where one can neglect effects
of gravitational field. In laboratory we always have to deal with
differences of energies of two states. For example, initially we have
an excited atom with sgome excitation energy and infinite energy of the
vacuum, then the atom jumps to its ground state emitting a photon so
the final energy is an energy of the atom plus the energy of the photon
plus infinite energy of the vacuum and practically we can forget about
the infinite energy of the vacuume The situation is different when
gravitation is taken into account. The energy momentum tensor appears
on the right hand side of the Einsteln equations and we cannot put in~
finity there (Adler, Liebermann and Ng (1977), Bernard and Duncan
(1977), Davies et al. (1977)).

There are at least two possible ways of approaching this prob-
lem. One can modify the expression for the energy momentum tensor
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and hence the rules of working with operators so as to set the energy
of the vacuum €, to be equal to zero. If you adopt this convenfian
then you will find that <T00> A <E2 + H2> and moreover in the
vacuum it is not possible to have simultaneously <E > = O and

{H> = 0 in all states, because this will contradict the Heisenberg
uncertainty relation. So when &y=0, <E°> and ( H°> can not
vanish. This is due t0 ordering convention of operators.

Thexe is anothexr approach which is recently very popular and
which is related to ‘the most important problem in physics. The total
vacuum energy density is equal to sum of vacuum energy densities of
different fields. Moreover the vacuum enexrgy momentum tensor has to
be proportional to the metric tensor in a Lorentz imvariant theory,
and therefore it could be identified with the cosmological constant
term, The most important restriction imposed on the guantum theory
is the requirement that the cosmological constant has to be equal to
zero or to be very small, according to the present observational data.
T do not know of any theory which satisfies this requirement. One pos~
sible approach is to reduce to zero separately the energy of the vac-
wum of electromagnetic field and all other fields present. There is
gt111 another possibility namely to assume that contributions of dif-
ferent fields to the energy of the vacuum are of different signs and
that the sum of all contributions is equal to zZero, but the vacuum en-
exgy of every field is equal to plus or minus infinity. Supersymmetry
theory is an example of a theory realizing this program (Golfand and
Likhtmen (1971), Akulov and Volkov (1973), Wess and Zumino (1974)).

In supersymmetric theory you have two fields a spin two boson field
representing gravitons and a spin 3/2 fermion field representing new
not yet observed particles (Deser and Zumino (1976), Freedman, van
Nieuwenhuizen and Ferrara {1976)). These fields exist and interact

in such a way that the total energy of the vacuum is equal zZero and
also other normally diverging quantities are finite. Therefore though
the energy of the vacuum for a single field is infinite the total zero
point (vacuum) enexrgy is egqual to zero. PFarticles of spin 3/2 appear-
ing in the supersymmetric theory have not yet been found in nature,
therefore it is premature to say that it is the right theory. To real-
ly realize the whole program it would be necessary to include all
fields found in nature which are responsible for strong, weak, electiro-
magnetic and gravitational interactions. This was never done and it

i5 only a dream of theoreticians. ZExistence of instantons makes this
problem even moxre difficult.

Situation 1s even more complicated in curved space since in gen-
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eral the curvature will also give some contribution to the zero point
energy and it at least should be renormalizable to & finite contribu~
tion (Dewitt (1975), Ford (1975), (1976)). We shall come back to this
point later. At the moment let us only remark that renormalization
procedures could at most reduce the zero point energy to zero, but
none of them could reduce simultaneously £ and B of the vacuum to zero.
E and H of the vacuum are observed in lamb shift measurements.

It is quite easy to describe creation of particles. If for
t < t4 we have vacuum, then at t >t > t, we can have some parti-
clesse Let us concentrate on a definite mode of the field (Ek' Hk)in
with a wave vector k and vacuum energy % fvoJk and let the outgoing
field be such that (T/.W)out = 1,2 (T/*V)in (classical) so that the
final energy is 0,6-ﬁook. The net gain in energy is therefore O,1ﬁoJk,
this energy is created. One can think that something is wrong since
the number of created photong is not integer. Our result is correct;
it means that the probability of creation of a photon is 0,1. There-
fore once you have a classical description of the field you can go
over into the quantum formulation and the zero point oscillations cor-
regpond to the initial field, which could be amplified. So we obtain
not only creation of photons from already existing photons tut also
creation of photons from vacuum. This 1Is similar to the situation in
quantum optics where If the system emits induced radiation, then you
know that it can also emit spontaneous radiation (Einstein (1917)).
Creation of particles from vacuum is in the some relation to the clas-
gical situation as the spontaneous radiation of atoms is to the induced
radiation.

In this simple description we are facing a cexrtain problem. The
classical electromagnetic theory is invariant with respect to time re-
versal and you can change the arrow of time. If from (T;LV)in at
t < %, we obtain 1,2 (T/,,v)in at t > t, then taking the reverse di-
rection of time (%t —= =-t) we would get that from 1,2 (T/*V)in we ob~
tain finally only (T}rV)in or from (T)Lv)in — 0.8 (T}*V)in’ which
is less than in the initial state, but this is of course impossible.
The point is that the quantities which we are calculating are already
averaged over phases. A classical field with a given phase could be
amplified or damped when it passes through curved space-time (t,<t<t,)
To specify the classical electromagnetic field one has to specify also
its phase tut then the field has an undetermined number of photonse.

A field with exactly determined number of photons has undetermined
rhase. There is uncertainty relation between phase and occupation num-
ber just as between coordinate and momentum. Therefore the vacuunm cor-
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responds t0 a field with undetermined phase (phase is defined for
standing waves) but for t > %, We have a field with given energy and
given momentum and with partly determined phase. We average over phases
of the initial situation and this introduces asymmetry. After aver—
aglng over phases of the initial situation we always obtain a gain in
energy in the final state. Approximately we have the following situ-
ation: if initially the amplitude of the field is Ain then the final
amplitude Aout is

A A4y (1 + 1 cos ©), (3)

out =

where h describes small departures from the flat metric, s0 we have

Guv = Nuv + hq uv(t), {4)
and q)x,= 0 for t —+t00 « If we take square of the final amplitude
then we get

2 2 2 2
Adut = Aln {1 + 2h cos © + h° cos” 9), (5)

and averaging over © we obtain

Gy = Gy (1 dud, (&)

so we get a positive contribution. In the reverse situation it is nec-
essary to average first over phases at the other end of the process.
Asymmetry is connected with the fact that we have to take an average
over phases of the initial situation. 4s a partisl result we notice
that the rate of creation of particles is proportional to h2 and not
to h (Starobinsky and Zel'dovich (1972), Woodhouse (1976)).

Tet us now return to the classical calculations and instead of
working with slectromagnetic field, which has many components, we will
regtrict ourselves to a scalar field which satisfies the wave equation

2
Dcp=%§;-Acp=0 )

where units are such that ¢ = 1. The metric of the background space-
time we take In the form

as? = at2 - a2(t)ax? - vE(t)dy? - c2(%)azd (8)

jece with flat three-dimensional spatial sections t = const. Assuming
that

e

L)D= £(t) eiki‘, (9)
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the wave equatlon reduces to

2
ALl - W, (10)
it
where
2 -2 .2 .2 2 ~2 _ .2
K, a o+ ky T+ k, e = (). (11)

The general solution of (10) when U= const is

£ = A e twWt g it (12)
(Por one running wave A = Ao’ B = 0 one cannot define the phase by
taking e 10t+® 4y oread of e 3V since 1t is equivalent to spatial

displacement. The phase ig important as a relation between Ao and Bo
or between Ao(k) and Ao(-k) which brings us back to standing waves.
The calculation for one running wave A = AO, B = 0 is already equiva-
lent to the phase-averaged calculation for standing waves.) In this
simple case of homogeneous metric no mixing of modes occurse. One can
now work with a single mode and we have a situation similaxr to mechan-
lical oscillations with time dependent period (pendelum with slowly
varying length).

As is well ¥mown if J is slowly varying in time we can use the

adiabatic approximation and replace f = A it by

£ o mifewat, (13)

Allowing A to be time dependent (10) leads to

0=F+ w? = 21wFr-1Dr+ (P + (P, (14)
and neglecting quadratic terms and highexr derivatives we get
i 1 D
I=-725 (15)
This equation can be easily solved and finally we obtain
9.3
A = ==
) (16)

Therefore the general solution of equation (10) in the adiabatic ap~
proximation ie

F= & e—ifwdt
Joo
where o, and (3 are constants but o= w(t). Now we can go fur-

thexr to the post sdiabatic approximation and assume that oL and ﬂ3

+ %eigwdt (17)
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depend on time. In this case the decomposition of the field into pos-
itive and negative frequencies is not unique. We can use this freedom
to impose additional conditions, which are necessary to get rid of
some pathological situations. This method of solving equation (10)
was invented by Lagrange.

Assuming thet the first time derivatives of o« , (3 and w
are small we can compute the first time derivative of f and get

f=wi OL\]oo'e-iSwdt +1RAT RACLL (18)
This relation is true in the general case if
s 1 - at ; X w3d
(&-F Sayetott, (51 2e)etv% o (19)
Equation (10) will be satisfied if in addition to (19} we have
. 1 eny ~ifeodt 3 . 1 oy ifeod
- ioch'(%+A§-§‘j-)e f +ipdw'(%+§-%’)elf too (20)
From (19) and (20) we can compute & and (3
o o 1w 2ifoodt
&=z5 e
; (21)
. 1 o ~21jeodt
(_J, =50 oLe

This system of coupled first order differential equations has a first
integral

2

;2 - !(51 = consgt (22)

|ol

To solve equations (21) we take as Initial conditions oy, = 1, ﬁin=
= 0, then we get in the first approximation

Bout = %f 'cc% e—-21$wdt at (23)
Tet the metric coefficients be such that
a,b,c ~ (1 + hq(t)) (24)
then using (11) we get
W= QJO('I + 2hg(t)) (25)

where q(%) is such that q(%) P 0. The function ¢(t) is nor-
malized for example, q. .. = 1, h denotes a small parameter and higher
powers of h are neglected. With this additional information we can

fnsert o> into (23) and obtain in the first approximation
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Bout = -;- X—‘;% e-2ifedt g4y S:’;e‘““’ot at = b, w, (26)
so ‘(Bcut\z = h2[ % w l2 and therefore [o(.outl2 =1 4 h2[ 2 o5 (2.
What we can learm from this result? In the classical case the
momentum is fixed and we have two frequencies positive and negative
corresponding to waveg traveling in opposite directionse When initial-
ly we had only one wave propagating in a given fixed direction, then
a wave propagating in opposite direction ie created and the initial
wave is amplified, which means that a palr of particles with opposite
momenta is created. Therefore particles are created in pairs and they
are moving in opposite directions. Momentum is conserved and this is
natural because, due to symmetries of the background space-time, mo-
mentum has to be conserved. Since particles are created in pairs, in
the case of electromagnetic fleld we have to create simultaneously iwo
photons and for this we need a portion of energy equal to 2-h W, .
This energy 1s taken from the gravitational field and that is why in
(26) we have ézooo' Density of created particles is given Dby

¥ Cen21=02 ] 14,12 a, (27)
which for massless particles reduces to
. " -2
W= n? (g, 1%w? e =0® [ 4,1 dw = v® [[3° at, (28)

80 we have

&N _ 1

at -~ 3
where we have introduced the velocity of light ¢ and now it is appar-
ent that our result is correct from the point of view of dimensions
(h and ¢ are dimensionless, the dimension of q is t'z). Fnergy den-

sity of created particles 1s glven by

h2 l-- [2

q (29)

€out = hzf ]éZwlz o w? dw (30)

If the perturbation of metric is described by a smooth function g(t)
then all guantities connected with the outgoing field are regular.
We exclude therefore S'functions, € functions and functions with
non continuous first derivatives. When ¢ 1s smooth and has no singu-
larities in the complex plain, then for large w , ézuo is exponen-
tially decreasing and we get finite result gt t+ — o0

Up to now we discussed boson fields. Particles with integex
spins-bosons, result directly from the application of quantum theory
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to the classical field theory. When filelds are c numbers one can de-
scribe them by the classical Lagrangian but if fields are represented
by operators then they in a ngtural way lead to particles, for exam~
ple photons. In the theory of fermion fields one begins with parti-
clese To describe particles we can use Schrddinger equation or, if
particles are relativistic, Dirac equation. Dirac equation predicts
that there should be positive and negative energy states. From ex~
perimental data we know that the wave function for a system of many
fermions is antisymmetric. Dirac equation forces us to accept the
fact that there is a sea of particles with negative energies and the
Paulil exclusion principle tells us that in vacuum the sea 1s always
filled. A hole left by a particle in a ses is observed as an antipar-
ticle. I would like to point out that the believe that the Pauli ex-
clusion principle can be deduced from the relatlivistic quantum field
theory is not quite correct. Without the Pauli principle the theory
will not be inconsistent but it will be in contradiction with simple
observations. For example, in that case atoms could not exist. Par-
ticles would then jump freely from positive to negative energy states
(without creation of antiparticles) and this is not observed. But
with the Pauli principle the Dirac theory describes processes which
really exist and are observed. In the Dirac theory an electron can
jump from one positive energy state to another positive enexgy state.
This takes place in atoms and it is a description of motion of an e~
lectron. There are also jumps from negative energy states to positive
energy states and these describe creation of a pair of particle and
antiparticle. Following the rules of the Dirac theory one can make
meny calculations, also in curved space-time, and in particular one
can treat creation of particles as & kind of motion. Imn curved space-
time a gquantum particle can acquire energy, can change momentum and
in particular can change energy state and jump from negative energy
gtate to a positive energy state. At first glance, creation of par~
ticles in the Dirac theory has nothing to do with the picture of cre-
ation of particles in electromagnetic field but in fact it is very
gimilar. In the electromagnetic case particles appear in pairs and
in the Dirac theory they also are created in pairs since an eleciron
jumping from a negative state to a positive energy state leaves a hole
in the sea of negative states which is interpreted as antiparticle.
In the Dirac theory it is obvious that energy needed to creat a pair
of particles is at least equal to 2m02. In electromagnetic theoxry we
have the same situation, we need 2Hhw> for two photons with frequency
@> %0 be created. So though the initial principles are very differ-
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ent it is well kmown that the theory of fermions and bosons is quite
gimilaxr,

Let us repeat the general properties of the quantum creation of
particles in gravitational field. Particles are created in pairs.
For charged particles it is so because charge has to be conserved,
neutral fermions are created in pairs because a particle jumping from
a negative enexrgy state to a positive energy state leaves a hole and
neutral bosons are created in pairs because momentum has to be con-
served in spatially uniform space~time. But in fact in every case
particles are created in pairs because the gravitational field is
coupled with other fields through energy momentum tensor, which is
constructed from quadratic expressions in these fields. In spatially
nonhomogenesous case particles created in a pair not necessarily have
to go in opposite directions.

With a special attentlion one should treat the case of massless
particles. 7For massless particles the theory can be conformally in-
variant, it means that if we have a metric

§5% = A%(t,%) l:dtz - ax® - d4y® - dz2] (31)

then solution of Maxwell equations and other wave equations in this
space-time can be obtained from solutions in Minkowski space. For
example, for the electromagnetic field we have

iﬂ’w, = F, »(Minkowski) (32)
and for spin 1/2 massless field (neutrinos)
Ay = A3/2 Y (Minkowski) (33)

Obviously in Minkowskl space it is not possible to creat particles
from vacuume Therefore massless particles are not created in a con=-
formally flat space-~time. In geometrical optics approximation mass~
less particles in Minkowski space move along null lines so ds = O and
therefore also 45 = 0. Particles, which move in Minkowski space along
null lines, in the conformally related space also move along null
lines. Therefore neutrinos and photons are not created in a confor-
mally flat space-time. Rate of creation of electrons and other mas-
glve particles depends on ‘their masses. When electrons are ultrarela-
tivistic then the rest mass contribvution to total energy could be con-
sidered as a small perturbation and it is easy to show that the rate
of creation of ultrarelativistic particles in conformally flat space-
time is proportional to m? and therefore it is very small.
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Let us now give soge numerical estimates. If metric perturba-
tions are given by hoe't Za or ho‘rz/t2 +T2 so that characteristic
time scale of perfurbation is v and characteristic amplitude is ho
then the frequency excited is of the order of ooqu’1 and the volume
occupied in phase space is u33 "J‘T—B. Therefore energy density of
created particles is

2 3 2
hu‘ﬁwu_) fuho

3

f""?lé

4 (34)

so it strongly depends on characteristic time scale of perturbation.
We can also estimate the energy density needed to influence the back-
ground space-time. Curvature is roughly given by Gh *‘%%% 80

r-“..t

3 ~d4

energy density created n tPl (35)
enexrgy density needed o T2

where tpy = (eh/c®)? = 5.4 107%* 5. When h 1:%1/72 is of the or-
der of unity then the influence of created particles on the background
space-time has to be taken into account.

Up to now we have considered only the following situation: we
took the vacuum to be the "in'" state. Then we introduced a small per-
turbation and after some time we switched it off. In the "“out" state
after subtracting the zero point energy (the energy of vacuum) we no-
ticed that a finite energy density was produced. But if we would be
interested in the situation in curved space~time (a2t a moment when
perturbation was not yet switched off) then it turns out that it is
not enough to subtract the zero point energy. In Minkowski space the
zexro point energy E;V diverges as a fourth power

v

€y = [ ghwe? aw ~nt (36)

but in perturbed Epace—t{le additional bterm proportional to g juoduﬁ
appears. Renormalizetion in this case is more then just subtraction
of zero point energy, it is also necessary to adjust the gravitational
constant. I shall not go into more details here. The important point
is that if in the initial state in Minkowski space there are no par-
ticles (vacuum), then after perturbation is switched off we would dis-
cover that energy density proportional to h2 was produced. It is
quite understandable since interaction is proportional to h and there-
fore matrix elements giving us transition probabilities are propor-
tional to h2. In the curved region of space~time we have also vacuum
polarization, something unrelated to particles and this effect is pro-
portienal to the first power of h, the stresses Tij (i,j = 1,2,3) are
proportional to h while energy density Too nth. It is not surprising
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from the point of view of the law of energy conservation that in order
to obtain energy which depends quadratically on pexrturbation one has
t0 have stresses which depend linearly on perturbation. For normal
particles pressure p can not be larger than energy density, we always
have Too > Ti‘ gnd this relation is called the energy dominance prin-
ciple. It was shown by Hawking that if the energy dominance principle
holdg, creation of particles ie impossible (Hawking (1970)). In the
real process of creation of particles in curved space-time, when met-
ric is changing with time, the energy dominance principle is violated.
Pirgt of all it mesns that it is not possible to describe the vacuum
polarization using a particle picture. The fact that the energy domi-
nance principle could be violated by quantum processes is very impor-
tant. There are very general theorems on the existence of singulari-
ties which relay on this principle (Hawking and Penrose (1970)). It
is guite possible that on the quantum level all or some of the singu-
larities could be avoideds One has t0 remember however that quantum
effects play a dominant role in very specilal and extreme conditionse.

Tet me make one more comment. Any conformally invariant theory
represents masslesgs particles. The converse statement is not true how-
ever. For example, the scalar wave egquation can be written in a con-
formally invariant form but it also could be taken in a non conformal-
ly invariant form and actually only experimental tests could distin-
guish between these two possibilities. As was pointed out by Grishchuk
{Grishchuk (1974)) only gravitons are exceptional. It turns out that
wave equation for gravitons is uniquely determined by Einstein egua~
tions and this equation is not conformally invariant. This is impor-
tant because the Friedman-Lemaitre metric

as® = dtz - az(t) [dxz + dy2 + dz2] = az(Q‘) [?tz/ae(t) - ax? - dy2
- az?] (37)

is conformally flat and creation of massless particles except gravitons
iz not possible in this space-time. Ii{ means that overall isotropic
expansion does not lead to creation of wmassless particles except gravi~
tons. In the case of normal matter, using the language of continuous
wmechanics one would say that second viscosity of the vacuum vanish.
Second viscosity is connected with that part of energy momentum tensor
which arises from isotropic expansion. So the vacuum of massless con~
formally invariant particles has no second viscosity. Particles which
have mass ~ electrons, protons etc. = are created in Friedman-Lemaltre
universe when t ~ 15/m02 80 when characteristic time of expansion of
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universe is close to their "Compton time". Particles are not created
before because then they are ultrarelativistic and effectively con~
formally invariant and they are not created after because the frequen-
cy of gravitational field is then mwuch lower than Compton frequency

of particles. So massive particles are created only in a definite pe~
riod of isotropic expansion. Characteristic parameter which tells
when it is necessary to take into account the back reaction of created
particles is mow 6m?/4ic and for all kmown particles in nature this
parameter isg very close 1o zero., If universe is quasi isotropic then
it is not necessarily conformally flat and its curvature is determined
by space derivatives of the metric as well as by time derivatives but
terms involving spatial dexivatives are near the singularity of lower
order and therefore the rate of creation of massless particles is
again small (Zel'dovich (1973)). Gravitons are not created if the
equation of state is p = # € « This is the case when scalar curvature
R is equal t0 2Zexo. If p <L% & gravitons are created but not very
efficiently and since during expansion of universe their energy den-
sity decreases faster thean energy density of other particles, they

are not dynamically important. Only when p > % & creation of gravi-
tone is effective but I do not think that equations of sbtate for which
P ‘>-1 & are realistic. We conclude therefore that in general in the
case of quasi isotropic expansion of universe creation of particles
does not play sn important role.

The most interesting from the cosmological point of view is cre-
ation of particles in anisofropic universes. In our group we have in-
vestigated creation of particles in Kasner univerce and othexr homoge-
neous but anisotropic world models(Starobinsky and Zel'dovich (1972),
Iukash and Starobinsky (1974)). The Kasner metric is usually written
in the form

ds2 = at2 - t2Prax? - £2P2gy? - 2P3g52 (38)

where in empty space D4y Pps Pz 8Te such that Py + pg + Pz = p% + pg

+ p% = 1. This metric is not conformally invariant so massless par-
ticles are created and also massive particles are created independent-
1y of their mass even in the ultrarelativistic case. Time derivatives
of metric components are of the order of 1/t, the curvature is of the
order of 1/t2 and energy density of created particles is of the ordex
of 1/t*. These quantities are diverging near singularity. We do not
know how to handle this situation in the general case. It was easy
when initially we had Minkowski space. Then one knows how to define
the vacuum state and how to impose initial conditions. In the Kasner
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space on the contrary the most important processes are going on near
singularity. In order to avoid this difficulty Starobinsky assumed
that up to some moment t = %, > tpy space-time was given by Minkowski
metric and at to g tPl it is smoothly matched with Xasner solution
so initially we have again Minkowsgkl space. In this case the rate of
creation of particles is roughly 1/t§. Energy density of particles
created at the initial moment is not enocugh to influence the background
metrice It is small in comparison with the curvature of space-time.
In the Kasner space~itime there are always iwo directions of expansion
and one direction of contraction but any element of volume is increas-
ing so expansion dominates. Therefore energy dengity of particles
created at initiasl moment is slowly decreasing with time. Momenta of
particles moving along the axis of contraction are decreasing as

%3 ('ta) 4JL N'fiﬂagd energy density of these particles is decreas-
ing more slowly then curvature. Therefore though created particles
at the first instant do not influence the background metric after some
time they are becoming impoxrtant.

Tn the cylindrical case of the Kasner metric there are iwo axes
along which there is expansion and one along which there is contrac-
tion. The shsolute value of scale on these axes has no meaning. At
the moment % = to we switch on the particle creation process {(Lukash
et al. (1976))« Initially created particles do not influence the
background metric. After some time particles which are moving along
the axis of contraction start to influence the background metric. Con-
traction is slowed down and finally space is forced to expand along
this axis. At the same time expansion in other two directions is also
slowed down and space starts to contract in these directions {see Fig.
2)e In order to smoothly match Minkowskl space with the Kasner metric
at t = t, we can assume a(to) b(to) = c(to). After some time t, we
will again have a(ty) = b(ty) c(ty)e At that moment of time momenta
of particles moving in different directions are approximately equal.
Prom the point of view of dynamics of space-time the moment t = t1 is
not exceptional and therefore expansion along the a axis and contrac-
tion along axes b and ¢ will continue up to the moment when particles
moving along axes b and ¢ start to influence the metric. We see that

along any axis pericds of conitraction follow periods of expansion and
as 8 result of this the overall expansion becomes more isotropilc
(Iukash et ale (1976), Hu and Parker (1977)). The characteristic time
in which anisotropy decreases is given by t to :’ ‘xwhere o~ 1e
So 1f t, ig close to t P anigotropy is decreasing very rapidly. How-

ever due to streaming of particles along prefered axes small anisotropy
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will persist for a long time. One can develope this theory much fur-
ther but I do not think that it is necessary. This theory is based

on one free parameter, namely t, and I do not know of any theory which
could predict the value of to‘

ts 1 e

Fige 2+ Evolution of axisymmetric Kasner model. At t = t, particle
creation process is turned on; at t = £ % created particles start to

{nfluence the dynamics of expansion; t gis the moment of isotropiza-

tion; A N'ta/tplﬂa 1. Created particles are considered o be free
particles.

I prefer another formulation. If to “’tPl then anisotropy de-
creases very fast so practically the expansion of universe instantly
becomes isotropice Therefore when we take into account the gquantum
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process of particle creation then it turms out that the anisotropic
singularity is intrinsically inconsistent. The only sensible choice
is to assume that the initial singularity is quasi isotropic (Lifshitz
and Xhalatnikov (1963))}. Metric near the singularity could be written
as

as® = at? - tgij(xj dxi dx’ + tzkij(x) axt ax! + ... (39)

and when 813 is given one can calculate from Einstein equations all
the higher corrections kij etce Space-time described by the metric
{39) is of course anisotropic but in comparison with curvature, which
behaves like t“z anisotropy is of the order of t'1 and it doeg not
lead to creation of many particlese.

There 1is still another situation which is interesting from the
point of view of particle creation. I have in mnind white holes. The
initial big bang is not necessarily simultancous. One can formlate
initial conditions in such a way that expansion of some parts of uni-
verse are delayed. You have then a plcture Inverse to a black hole
and therefore these objects, invented by Novikov (Novikov (1964)), are
called white holes., Before explosion of a white hole there will be
a8 singularity in the metric and it is possidble to show that near this
singularity, which is locally not distinguishable from cosmological
singularity, particles will also be created. ZEven in the classical
picture one can assume that some parts of matter will not start ex~
panding before a given wmoment. This matter produces such a strong
gravitational field that it is actually inside its own gravitational
radius. As is well known, space-time inside gravitational radius is
not static (it is also not stationary) and creation of particles is
possible. In classical theory you can delay explosion of white hole
for an arbitrary long time, but you can not do it if creation of par-
ticles by gravitational field is included,

In order to give complete picture of guantum particle creation
process in gravitational field I should also mention that this process
oceurs also in gravitational field of a black hole. This was first
investigated by Hawking (Hawking (1974), (1975)) who analyzed the be-
haviour of a scalar field in the vicinty of a collapsing star and
showed that a distant observer will see a stream of particles with
thermal spectrum, produced by gravitational field of a black hole. The
rate of creation of particles depends on asymptotic parameters of black
hole (mess, angular momentum, charge) and does not depend on the dy-
namics of collapse.

At the end I will discuss one technical point. We will consider
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magsless scalar field on a sandwich type space~time with Minkowski
space for t < %, and t > %, (tz > t1) and conformally flat space
for t, < % < tye General state of the field can be decomposed into
creation and annihilation operators and coefficients of this expansion
are just the classical solutions of scalar wave equation. Classical
solutions are important because even on classical level we can describe
creation of particles. If initially we have some waves propagating
from left to x»ight and in the final state we have waves propagating
from left to right and their amplitude is not changed and there are
no waves propagating from right to left then we know that new parti-
cles were not created in the conformally flat reglon. However if we
are interested in what is going on in perturbed but conformally flat
region and we want to calculate the energy momentum tensor, then we
have to deal with divergent quantities (DeWitt (1975)). In order to
extract finite result we have to renormalize our theory. One way to
do it is to introduce mass . and recalculate all quantities for mas-
sive scalar field and only at the very end take a limit m - O, 4s
was already mentioned before energy dengity of created particles is
proportional %o /u-z and it will go to zero in the limit but we will
notice that the trace of energy momentum tensor, after introduction
of metric perturbations, in the limit A+ — 0 is not zero but is pro-
portional to hi. This fact that the trace of renormalized energy mo-
mentum tensor of massless particles is not zero even in conformally
flat space is called conformal anomaly (Desex, Duff, Isham (1976)).
Conformal anomaly is always found In curved space and actually the
trace of energy momentum tensor is proportional to the curvature of
gspace~time. The conformal anomaly does not depend on renormalization
procedure used and it is not connected with the field itself but rath-
er with properties of vacuum polarization.

Let me make one more final comment. The number of particles
created in the homogeneous case is

N = (#° at (40)
and therefore
LIRS (41)

t
but this number has a meaning only if one does not ask about the spec~
tral distribution of created particlese It means that it is not pos-
sible at a given moment of time to distinguish uniquely the energy
density of created particles from the energy density of vacuum polaxi-
zation. When perturbation of space-time depends on space variables
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we hagve
we [ g | % e [E]) aw (42)

where © denotes the step function. Now we cannot transform this in-~
tegral into a local guantity. Creation of particles is a non local
process, it depends on the overall spatial picture and not only on de-

rivatives of the metric at a given point.
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VISCOUS DISSIPATION AND EVOLUTION OF HOMOGENEOUS
COSMOLOGICAL MODELS

Niccolo Caderni
Institute of Astronomy, Cambridge, U.K.

Ante mare et terras et quod tegit omnia caelum
unus erat toto naturae vultus in orbe,
quem dixere ¢ h a o 5 ¢ rudis indigestaque moles
nec quicquam nisi pondus iners congestaque eodem
non bene iunctarum discordia semina rerum.

Ovidius: Metamorphoseon
Book I VVe 5=9

1. Introduction and Viscosgity Coefficilents

In this report I shall consider the effects of viscous phenome-
na on the evolution of some anisotropic cosmological models. The ex—
istence of a highly dilssipative epoch in the history of the universe
was first claimed by Misner [1] in the hope of explaining the large
scale regularity of the present universe without postulating strictly
homogeneous and isotroplc configurations since the beginning of the
coesmological expansion. The conceptual difficulty (if not impossibil~
ity) of stating initial conditions on the initial singularity suggested
that the status of the universe is not determined by very special a
priori initial conditions, but is due to evolutionary processes close-
ly linked to the physical properties of the cosmological matters it~
self. Such a philosophy, and the program generated by it was called
"chaotic cosmology" [2,3]. It states the logical and physical ines-
capability of our universe which, born out from a primoxrdial chaos,
was able to smooth out any irregularity and to develop into its pre-~
gent configuratione.

On the other hand, the practical difficulty of finding physical
processes actually effective to drive the cosmologicasl evolution from
any initial condition up to the present status generated a competing
set of theories which we shall call "quiescent cosmologies" [4]. In
this context several intriguing theoxries are brought in support of the
idea that the universe was regular since the remote past.



82

The major source of cosmological information is the microwave
background radiation. The investigation of its spectrum [SJ shows
that the universe is expanding guite isotropically st least since the
time in which it became transparent fto the radiation and that the ra~-
tio of the background photon density to the baryon density in the uni-
verse is of ordexr ﬂ1108. A siwmple calculation shows that this number
can be interpreted as the radiation entropy per particle in the ex~
panding universe [6] .

The explanation of the isotropy and of the entropy content of
the universe therefore becomes the battelfield of the competing cosmo-
logical theories. Without any pretext of completeness and generality,
having only the purpose of inserting the following work into a slight-
'ly more general context, I tried to indicate in fige{1)how modern cos-
mology poses itself in regard to the problem of initial conditions.

It is of course impossible to translate the greek philosophy into mod-
ern scientific thoughts and methodology. Nevertheless I call "Epicu~
rean" those models where the primordial chaos, owing t0 successive

METoMOP PwELs Ls now reduced to our almost regular universe
@q. On the other hand, models where a strict symmetry exists since
the beginning may properly be called "iristotelian® [8]. I will quote
some ideas supporting each view and the reader is sent to the current
literature for direct explanatlons.

On the Aristotelian side one can first find an hypothesis mainly
due to Penrose Eﬂ in which the isotropy of the space is associated
with & gravitational entropy expressed by the Weyl tensor. Barrow and
Matzner’s [10] idea is that the mumber ™ 10° for the photon-baryon ra-
tio instead of being large ie actually too small if the universe was
initinlly anisotropic. Owing to dissipative processes too much entropy
would be generated in a chaotic universe. Finally, the Anthropic Prin-
ciple {31] states, roughly spesgking, that the isotropy of the universe
1s a mere consequence of our existence, as well as the fact that the
universe is expanding st just the critical rate. Among the Infinity
of possible universes only a gquite regular one would allow life to be
developed in it.

On the Epicurean side several degrees of chaos may be found ﬁz].
The first distinction is between homogeneous and inhomogeneous wodels.
We know that inhomogeneities do exist, although, due to their relative
mathematical simplicity, howogeneous models are more often investigated
in the current literature. Nevertheless anisotropic but homogeneous
models allow one to investigate several physical processes which do
not occur in Friedman universes. In models in which a perfect fluid
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is assumed to be the source term in the Einstein equation and the evo-
Jution toward isotropic configurations is merely adiabatic [j3,14],
some essential physical properties of the cosmological matter may be
ignored: as a matter of fact the initial anisotropy may be strongly
damped by various kinds of dissipation, leading to a large increase of
the radiation entropy. Two kinds of dissipative interactions can take
place between particles and fields in the first moments of the Uni~
verse s life. The first one is & quantum effect, namely the creation
of pairs of particles in time-dependent gravitational fields [15,16 |
Pair production tekes place at very early times (i.e. close to the
Planck time tpfv 10’43 gec) and is supposed to be very effective in
spite of the short duration.

The other dissipative process 1s viscosity [3,17-23]. If the
mean free paths of particles in the cosmological fliuid are long enough,
viscous forces are able to damp the expansion anisotropy quite effec=
tively. Such a situation arises mainly in the lepton era of the Uni-
verse, when the temperature was © -109 K < T < 1.5 -1012 X, because
of the weak coupling between neutrinos and electron-positron pairs.

A previous dissipative era might take place at wuch higher tempera-
tures (T ﬂ/1020 X) EQQ] when gravitons are assumed to be in thermal
equilibrium with matter. However the existence of such an epoch is
problematic because of a possible ultimate temperature T &11012 X [3@].
Quintessentially epicurean, inhomogeneous models have not been exten-
sively studied, although a large portion of future cosmology may xe-
side therein [12].

One should notice that the debate between epicurean and aristo~
telian cosmologies is actually going on in other, very important, as-
trophysical subjecte, in which we are not here involved. In particu-
lar it is not %rue that the present structure of the universe would
arise from an arbitrary spectrum of the primordial fluctuations. On
the contrary, only special assumptions about the shape and the ampli-
tude of such fluctuations do allow protostructures to be formed, ac-
cording to the present galaxy formation theory.

In the following I shall restrict myself to the investigation
of vigcous phenomena in the lepton era, giving a slightly literal re-
view of a series of papers by Roberto FPabbri and the author, here
quoted as [31-3é]. The rest of this chapter is devoted to the calecu~
lation of viscosity coefficients for the neutrino-neutrino end the
electron~neutrino plasma. Then, in chapter 2, the main features of
the dissipative process, are displayed in the simple case of the flat,
Bianchi type I space. When we will try to extend our conclusions to
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more general curved models, a peculiar coupling between anisotropy and
curvature featured by these models will rebuff the former optimism:
Chapter 3 deals with the evolution of Bilanchi type IX and type VIII
models. Lastly, a simple case of an open model (type V) is studied
in Chapter 4 together with the final non-conclusionse

Though obviously an over-simplification 1t makes sense to approx-
imately describe the cosmological fluid during the lepton era as a
non-degenerate mixture of electrons and (electron) neutrinos. Accu~
rate expressions for the varlous viscosity coefficients may be found
by the method of relativistic gquantum kinetic theory and by the knowl-
edge of the weak interaction cross~sections below 150 Meve 4 fully
covariant kinetic gas theory has been developed during last years by
a number of gcientists in Amsterdam [37~38]. Such a theory, which ap-
plies to very hot dilute gas, is based upon a generalization of the
Engkog approximation and provides explicit expressions for the coeffi-
cients characterizing transport in binary gas mixture. These expres~
siong have the form of successive approximations and are valid for all
temperatures. More recently such a theory has been modified, taking

into account quantum processes [39-40].
The energy momentum tensor for a viscous fluid may be written as

2
Tap= [E+2- (0557 uﬂif*]u“uf‘”

+ [p-(qv-%’fzs)u’*m]ga@ (1-1)

- Ms <u“§{3+ Voo + uﬁu"\ Vg g + umu?‘ LPEND
where u, is the hydredynamic four velocity, normalized as u*‘u» = -c%
1s and N, are the shear and the volume viscosity respectively. Here
and henceforth, latin indices assume the values 1, 2, 3, whereas greek
indices agsume the values 0, 1, 2, 3. According to relativistic quan~
tum kinetic theory, given the interaction between the constituent par-
ticles of the system, the viscosity coefficients may be calculated in
successive approximation. They can be expressed in terms of functions

Fab defined as

it

Pap(2) Xy'a (% - 1° K (2y) ay
n = g +% (_1)8

where Kn(x) is the modified Bessel function of the second kind of or-



88

der n anf 2 Esmcz/kT with m the electron wmass and k the Boltzmann con-
stant. Taking the composition of the cosmological (e, ) mixture such
that the electron number density is twice that of neutrinos (see how-

ever ref.[24), we may write the first non-vanishing approximation to
the viscosity coefficients in the form:

s
I B

Ny =32 9 ¢ o TRt e g’ (4-3y)F K, (2)/V(2)

1k

15360 or €2 w1 h 4 ¢ 2® Ky(2)/5(2)

where G is the weak coupling constant and ¥ = cp/cv. The quantities
S(z) and V(z) are collision integrals depending on the details of the
particle interaction. Thus, the value of the viscoslty coefficients
varies with the parameters of the weak interaction theory. In fact,
on the basis of the Weinberg-Salam model we have:

S(z) = 942080 2° K,(2) + 22 [(1 + c)(% 2° Peg + 22 Fog + %? Pag)
- c(% 2? Fgq ++} 2 Fgg + % Pio,8) * 02(71'6 2® Pgg + ‘2‘7‘5 z Fqg
+ %% Fgg) + CZ(T%U 2° Fi0,10 * %% 2 F11,10 + %% F12’10)] ,

VOIS E I O IYC R AP RS

where ¢ =4 sin2 eh, with 6% the Weinberg mixing engle. Different
values for the both viscosity coefficlents are shown on fig. (2}, where
the viscosities amccording to the charged current V-A theory are also
indicated. It is seen that the value of the W-S viscosities exceeds
the V-4 value, but the Weinberg angle has the effect of reducing such
an enhancetent.

In the following, in order to integrate the Einstein egquations
for the cosmological models numerically, polynomial approximations for
the viscogity coefficients are employed. For the §-5 viscosities, in
the case sin2 e% = 0.35 we will use the asymptotic expressions:

_ 15360 q2  hte
8 2570250  G°m

z (1 - 0.0704 22 + 0.0095 z%) (1-2a)

4
no =22 ’ﬁzc 25 (1 + 0.7007 22 - 0.8368 z%) (1-2D)
V184861  G“m

which in the range z | =1 approximate the actual coefficients to with-
in 1.5 % and a factor n 3 respectively. Ve remark that, throughout
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this range Qs/Tzv > 102 (see Fig. 2), so that the inaccuracy of the
approximation to the btulk viscosity (which, for z < 0.1 is already
less than 10%) is relatively unimportant.

100

Fig. 2. Dimensionless coefficiente of shear viscosity (8) and bulk
viscosity (V) as functions of the reduced temperature z4=%T/mc » In
both =ets of three curves the lowermost curve is based on V-4 theorxy,
while the other two are obtained %p the context of the Weinberg-Salam
model and represent the cases sin<€ = 0 (upper curve) and sin“e =
= 0.35 (middle curve). (Ref. [33])

2. Neutrino Viscosity in Bianchi {type~I Universes

This section will deal with the evolution of Bianchi type~I cos-
mological models under the Influence of lepton viscosity. In geomet-
rical units (c = 897G = 1) the metric of such spaces can be written
as

as® = - at% + é [Rk(t) d ¢ k] : (2-1)

where Rk(t) denotes the cosmic scale factor associated with the k-th
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principal direction. Therefore the directional Hubble psrameter Hk
can be defined

B = g3 (In R

The Einstein equations for a space with the metric (2-1), filled with
a fluid of shear viscosity 115 and volume viscosity xlv, can be re-
duced to a system of two coupled ordinary differential equations. They
take the form:

Feie-m-f g (2-22)

%18;-=-3H(6+p>+9QVH2+4QS(3H2-8) (2-21)
where H is the average Hubble parameter H = (H1 + Hy + HS)/S, & is
the energy density and p the pressure of the cosmological fluid. Equa-
tions (2-~2) were first investigated by Belinsky and Khalatnikov [?5]
in the case of hypothetical dependence of the viscosity coefficlents
on the ehergy density, using the technique of dynamical systems. Here
we integrate the Einstein equations numerically. We assume that the
cosmological matter can be represented at each epoch by a fiuid in
thermal equilibrium, and we adopt the viscous approximation using the
coefficients found in Chapter 1. In the lepton era the main contri-
tution to the energy density comes from electron-positron pairs, neu-
trinos and photons. The contribution of matter (ionized hydrogen) is
totally negligible, therefore the equation of state is p = & /3. All
kinds of particles are in thermal equilibrium, and it is possible to
define a unique temperature T, such that €cc T4,

The viscosity can strongly modify the dynamics of the evolution
of a cosmological model. In ege (2-2D) three terms contribute t0 the
rate of change of the energy density £ : the first one describes the
adisbatic cooling of an expanding gas, whereas the others give the
heating due to viscous forces. The bulk viscosity term provides an
additional pressure Pv = -3'QVH end it is already present in isotropic
models as the only kind of viscosity allowed therein. Its influence
on Priedman universes has been investigated, in the framework of the
present investigations, in ref. [3ﬂ . On the other hand, the shear
viscosity term depends on the geometrical configuration and has a
much greater bearing on the cosmological evolution, its contribution
is dominating in enisotropic Bianchi spaces. A4s a matter of fact the
expension anisotropy A defined as
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L=3 ( i (2-3)
k=1
in type-I spaces takes the form
2&
A =2 -—"—
312

50 that the amplification factor for the shear viscosity (3H2 -£)
is nothing else but the anisotropy energy density & a

£, = 3 A (2-4)
So, the more anisotropic the space becomes, the more important the
viscous heating term is. Therefore, one is forced to think about the
possibility of having solutions in which the space is highly aniso-
tropic, i.e. &K 3H2, the positive Tzs-dependent term is largex
in magnitude than the negative one and the viscous heating prevaile
over the expansion cooling. Therefore, the use of the viscous fluid
scheme allows us to define two classes of solutions. In the former,
which we call class 4, we include solutlions in which the lepton era,
following a previous hadron era, starts at T ™2 1.5+ 1012 &, For all
of these world models the temperature decreases monotonically with
time., In the latter class (class B) we include solutions in which the
lepton era starts at T2 6.107 Ks Here the temperature increases very
rapidly for a short time, then drops down.

However, the use of viscous approximation in cosmological prob-
lems has been questioned by several authors [17,18]. The most restric-
tive criterium for its validity is provided by the Stewart s theorem
DS]. This theorem poses & limit in the rate at which the energy den-
sity 1°° (radiation + matter) can be increased by the anisotropy of
space; in other words it restricts the effectiveness of the viscous
mechanism. The Stewart inequality reads:

a(in T°° RY)
d(ln R°)

< 1 (2-5)

where R ig the average scale factor. As far as class-A models are
concerned the above condition is fulfilled throughout the lepton era.
The collision time %, becomes larger than the hydrodynamic time H’
just st T A10'0 K, but it has been proved [24] that the viscous heat-
ing does not cease at ¥t H ~v1. On the other hand, Stewart s upper
limit is apparently in contradiction with the existence of regions
with 4 £ /dt > 0, found in all class~B solutions. However, a consist-
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Pig. 3. The Hubble varameter as a function of the energy density for
the lepton era of a few Bianchi type T models. Each curve is labelled
by the corresponding final entropy ratioZ¢ . The val\.se 2= 1.001
corresponding to the Priedman solution. { See ref. [32]) .
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ent treatment of the dissipative mechanism [12,24] shows that, when
t.H >>1, the anisotropy energy density can be gtored in a "potential®
form and in thies form it already resides in the 7°°® 50 that one can
write 199 = aiso + Egniso? with the possibility of having Eﬂmﬁsojaeiso‘
If we uge the fluid approximation only 6150 is ascribved to T°°, where-—
as e;aniso is formally included in the anisoiropy energy density.
Therefore eqe (2-2b) refers to the rate of change of the isotropic en~
ergy density only. In this way the Stewart s theorem may be circum-
vented: we mast identify the quantity & appearing in egs (2-2) with
the isotropic energy density £,., While €5 increases sharply in
the class B models, the ftotal T % jje in the range imposed by the ine~
quality (2-5)e. Moreover, we shall also ldentify %F the following the
temperature with the isotropic temperature T OC si;o’ Nevertheless,

in clgss B solutions these may lead to important errors in the first
steps of the integration. A4s a matter of fact, the important feature
displayed by these unconventional models 1s that the universe springs
for a while into a collisionless regime. Afterwards, when the tem-
perature 1s T nv 1010 K, the neutrinos become collision-dominated.

Solutions of both classes are clearly displayed in the (H,&)
plane which represents the phase space of the dynamical system (2=2).
In fig.(3)we report few models of both classes. The separatrix of the
above solutions is the curve H = M & 1°27 with ¥ = 4.1 +10'6, & local
maximum of ¢ , conslidered as a function of H n:t'1, appears very
clearly in each class B models: it corresponds to the maximum (iso-
tropic) temperature, which viscous heating is able to produce before
being overcome by the expansion cooling.

In geometrical units the inltial values of €& for both classes
are & = 3.91 -1('1"13 cm-2 for class A, and = T.04 .10-23 cm'z for
class Be The initial values of the Hubble parameter Hin for class A
1ie between the isotropic solution & = 3H® and the separatrix. For
class B'Hin ig limited from below by the condition ein.>»o. Then we
allow H to increase 1111 the anisotropy is so high to bring the iso-
tropic temperature up to T 2 1.5 . 1012 K. A larger asnisotropy would
drive the universe in a hadron era that we are not able to treat, but
where, due to the short mean free paths of the strong interactions,
viscous phenomena are not expected to play an imporiant role. The
range of initial conditions for H is then

3.4+ 1077 on <H, <15 on™! Class 4
- - - (2-6)
100" o' < B, < 10 e Class B
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Fig.(3) also shows that for any initial conditlon in class B and
for class & models with H > 10-4 the universe is represented by the
same point in the phase space at the end of the lepton era: the aniso-
tropy is reduced to A ~ 0,82 and the subsequent evolution is practi-
cally the same for all the cases.

Integrating equations (2-2) for the plasma era one should intro-
duce as an initial condition s small contribution 8uzt° the energy
density, representing the rest mass density of matter, which will be-
come_ important in later stages. Moreovexr the equation of state is now
P = rgd s Where € rad iz the radiation enexrgy density only. Accord-
ing to our investigation, viscous phenomena, here due to the photon-
electron interaction [3§ , are not able to influence the cosmological
evolution for T <6+ 10° XK. A4ll dynamical variables evolve in the
same manner as in adiabatic model up to 1074, By choosing a suitable
value for the matter density contribution &n!We get the value H =
= 50 km sec"1 Mpc"1 when the background temperature is T = 2.7 K. This
value of & , which is the nge fgr all the casgs, corresponds to a
baryon number density N N 10 cm - at T = 6 *107 X and Just the crit-
ical dengity N A 107C e~ at the present time. The anisotropy of
space decreases further according to the adiabatic expansion law
A H2 R6 = const, so one can calculate the expected guadrupolar aniso-
tropy of the background radiztion. We found

A%QL = (3.8 + 0.3) 1077

This result, obtained for a large set of initial anisotropies, shows
how effective the neutrino viscous damping is. For comparison, an
adlabatic universe with 2 — &4 = 1017 at T = 102 K would exhibit an
anisotropy ZéT n; 0.89 at the present timee. The best accuracy in the
measurement of the guadrupole anisotropy of the cosmic background is
now Q,10-3, thus anisotropies as small as 1077 are completely unobserv-
able.

The large demping of the anisotropy which takes place during
the few geconds of the lepton era is accompanied by a huge enhancement
in the radistion content of the universe. The entropy production may
be studied by looking at the ratio of the radiation entropy at some
time t to the initial radiation entropys

S(4) = (%QL%‘L’)B (2-7)

in in

Because of the strict conmnection between the viscous dissipation and
the damping of anisotropy We are able to find simple relations between
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the geometrical quantities and the physical properties of the cosmo-
logical matter. This is particularly true for class-B models where

the radiation entropy enhancement via viscous dissipation is at each
stage governed by the law

S= 2 Hin ( € )1/2 =2 62_:_£_)1/2 (2-8)
H Ein 2 - Ai
We remember that class B models are defined as ¢&;, = &y, where the

subscript f means end of the lepfon era, therefore we found the fol-
lowing expression for the final entropy ratio
H

3, = 2@3? (2-9)
Thus we arrive at the following remarkable result: due to neutrino
viscosity the radiation entropy increases by a factor which depends
only on the initial anisotropy. In class B models Hin is limited from
above by the condition H, 22 10 cm~ ' so, according to our calculationms,
the maximum entropy production via neutrino viscosity in the lepton
era is Eﬂfiﬁ 2 «10 2. In class A models the photon number density
increases but not so much and a simple power-law dependence between
entropy and anisotropy is only available for sufficiently large ini-
tial anisotropies (i.e. H;, 2> 10-4), 50

H
-17 € in in
E: = 1 i £ R L1 -
£ 0 Er Hf (2-10)

The maximum entropy ratio for these models corresponds to the separa-
trix, where zif z 105. In the isotropic solution, where only the
bulk viscosity is present, we found an entropy production 2%.: 1400164

Once we realized how important for the cosmological evolution
viscous phenomena can be, we may ask how our results depend on the
magnitude of viscosity coefficients. In view of the fact that viscous
approximation can break down at some stage, it is important fo see
what happens when viscosity coefficients are much less than those ob-
tained in Chapter 1. ILet us consider the dependence of the final en~
tropy ratio ij and the final anisotropy Af on the viscosity coeffi-
cients by setting

s = & Mg ﬁv=K\er

where Ks and Kv are constante The resulis are reported in fig.(g)
where K = K_ = K, lie in the renge 107> < K < 10. Three main features
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are apparent: the final entropy ratio {considered for several values
of the initial anisotropy) is a linear function of K in the X s
region. Thie fact proves that, although the quantitative results de-
pend on the magnitude of 1) ., Wwe would gt111 find a large production
of entropy even of the shear viscosity were substantially smaller than
Q:‘s, provided the universe was suitably anisotropic at the beginning
of the lepton era. In particular strong dissipation takes place even
if the neutrino concentration is wuch smaller than the electron con~
centration [24]. On the other hand, for K 21, a change of regime
occurs and > depends on K weakly, suggesting the existence of a sat-
uration limit. Such a limit prevents the production of entropy in the
finite range of temperature of the lepton era from being infinite,
even if we let A arbitrarily large at the beginning.

On dashed line we give the final anisotropy parameter which does
not depend on the initial anisotropy. Since a cosmological model may
be considered guasi~isotropic when £a/'€ =< %1 the figure shows
that the isotropization via neutrino viscoslty 1s quite effective for
K > 1. Conversely, for smaller values of the shear viscosity, and
especially for XK <5 0.1, the cosmological expansion would remain high-
ly anisotropic if initially &£,/& >>> 1. Therefore the actual
strength of the weak interactions is sufficient to permit the isotro-
pization of a wide get of world models.

3. Neutrino Viscosity in Bianchi type-IX and type~VIIT Universes

Computation of the viscosity coefficlents for the lepton gas,
an ldealized constituent of the Universe in the first three seconds,
allowed us to investigate in Chapter 2 the evolution of a wide range
of cosmological models of the Blanchi type-I and to observe how the
dissipative mechanism was able to damp out any primeval anisotropy
and to substantially enhance the radiation content of the Universe.
Therefore these conclusions support the chaotic cosmology program.
However Bianchi type-I model does not possess a sufficient number of
internal degrees of freedom D4,4ﬂ to allow conclusions drawn therein
to be considered general. In other words Bianchi-T model is a zero-
measure subset in the set of all homogeneous models, so that one is
compelled t0 check whether the hypothesis that dlssipstive processes
could smooth out any primeval irregularity works in more general sit-
ustions. The most generic sets of homogeneous world models are Bianchi
types VI, VII, VIII and IX: in this chapter we gtudy the evolution of
diagonal type-VIII and type~IX spaces. Type-1X models are generali-
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zations of the k = +1 Friedman model and their evolution has been
studied in ref. [}1,12,13,1@ ; type-VIII (semi~closed topology) does
not contain strictly isotropic subspaces, but there are solutions
quite plausible from the point of view of observational data.

The integration of the Eingtein equations for both models clear-
1y shows that, although neutrino viscosity does damp primeval aniso-
tropy quite effectively, "new" anisotropy is pumped on by the curva-
ture of space when the universe departs from a pure Kasner like be-
haviour. The existence of such a coupling between curvature and ani-
sotropy prevents neutrino viscosity from being ean effective agent of
isotropization for closed and semi-closed topologies. If the universe
was highly anisotropic at the beginning, strong upper limits on the
initial curvature are posed by the observed isotropy of the background
radiation. Moreover, the negative result about isotropization in
curved models is independent on the dissipative process and it is a
general property of homogeneous cosmologies, so that the status of
chaotic cosmology turns out to be weakened.

Tn the diagonal Bianchi IX and VIII models the metric may be
written in an orthonormal tetrad

3

dsz = - dtz + :Ei (u)i)z {3~1a)
i=1

wh =R (8) QL W= as (3-1b)

where G2 iare time~independent differential 1-forms. The exterior de-
rivatives of the differential forms (3-1b) are related to the group
structure of the three-space and can be written as

i _ 1 i 8 R
duw™ = 5 ap WA W (3-2)
in = --12 Cljél Qk A Q 1

where the Cél are the canonical structure congtants and A denotes
the exterior product. In our case:

ik = - €4 1 (53-32)

where Eikl is the skew pseudotensor and

1 type IX
C1 (typ ) (3-3b)

Cy = Cy == Cz = 1 {(type VIII)
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Using eqs.. (3-1) and (3~3) one can derive the commutation coefficients
fo‘p for the unit vector of the orthonormal frame (3-1a),

K
Cor = = B (

3-4
Cl = - 6 clRl )

1k 11 R, K

One can now calculate the affine commection 1-form Cd/u.v and the cure
vature 2-form R/,_,_v with the standard formulas

CAJ/‘”:-;- ( C,u.vo(.+ Coc/.;v - 6\’0(/4) woﬁ (3'53)
Q/“vz CL)/*“/\UJ“\,‘*' dwjﬂo‘\’ (S‘Sb)

and the curvature tensor R'uva,«_:,

v ~ 3 e

= QI A W

Rp= B

then calculate all the components of the Einstein tensor G,xp which
turn out to be diagonal. In oxder to construct the Einstein equations
one needs also the stress-energy tensor T“{a for a viscous fluid as
given in (1-1). Using the affine connections (3-5) we find for a

fluid at rest in that frame
Too = &
e = P+ (275 = 3MGH - 2 H

Unlike the type~I case, the non isotropy of the curvature tensor does
not allow in the present case a unique differential equation for the
average Hubble paresmeter t0 be written down; therefore the Einstein

equations take the form: (a detailed derivation is given in ref.[35])

aH c- R ¢, R 2 2
k 1 171 ii Rk
at - - 3HHk *7 if;z;k ! (W-W 1 k-') - (~Rrirl ) l

+F(E-Dp) +5 Q HE+ 20, (H-H)

. (3-6)

(3-7a)

1 1g*
3 Z HiHy + 5 R = € (3-Tb)
1£ 3§
*
The space curvature R is nothing else but the trace of spatial com-
ponents of the Rlemann tensor, once one formally sets H = 0, and it
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takes the form

o]

2
R* = .--1'- - 1 WRi ) (3"8)
3Z§- Ri * ié%éh ( 1

S0 we notice that rR¥ is always negative in type-VIII spaces, whereas
it can be positive or negative in type-IX depending on the relative
difference among the various radii.

A remark should be made on using the system (3-7) in numerical
integration. In highly anisotropic situations (vacuum stage) the en-
ergy density € in eqge (3~7b) is given by the difference between
larger quantities, so it is preferable to use the energy halance equa-
tion:

—2—%=-3H(€,+p)-9'QVH2+4'QS(3H2-F/+%R*) (3-9)

which indeed clearly displays the dynamics of the system once coupled
with eq. {3-Ta), leaving the relation (3-7b) as a constraint for the
parameters specifying the initial conditlons. In fact, because of the
larger number of degrees of freedom allowed in the present case, the
problem of initial conditions for mumerical integration is now more
complicated. Once &, 1is determined by the solution class, several
more parameters have to be chosen. In most of our calculation we a-
dopted the following procedure: for a given world model we fixed
(&%), , (Ry/Ry) p, (Ry/Rg);, and Hy, end set Hy = Hy ;. Then
eqs (3-8) determines the initial value of R3, whereas the initial ani-
sotropy was determined by the constraint (3-7b). Then, like in the
flat space case, we allowed Hin to vary keeping the other parameter
fixed: in this way one observes the influence of the initial aniso-
tropy Ain on the properties of the world model. We remembexr that, be-
cause of the fluid scheme introduced in Chapter 2, the values of H
are subject to the limits imposed by (2-6). The systematic change of
the various parameters have been also Iinvestigated: in particular one
observes the influence of the initial curvature repeating the whole
procedure for several values of the initial curvature parameter
(R*Vﬂz)in, ranging in magnitude from 10790 to 1071®, For some models
we followed also the evelution in the subseguent plasma era making use
of the adiabatic approximation.

The time evolution of & Blanchi IX model with R'Y/HZ = 1077® ini-
tially was reported in ref. [34]: Pige(5)glves the curvature versus
temperature dependence for several class A models. One notes that the
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Fig, 5. The magnitude of R"'/H2 versus the temperature for some class
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Note that R¥ is pogitive only in the branches labelled with the +

sign. (Ref. [34] ).
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curvature quickly becomes negative since the scale factors become
widely different due to the large expansion anisotropy. Afterwards

the magnitude of RfVHz increases very strongly due to viscous heating
and becomes of the order of unity in the extreme cases. In these cases
an oscillatory regime takes place near T = 1010 K and goes on in the
subsequent era (see curve (e)); however, as it will be shown below,

the present day isotropy of the background imposes stringent limita-
tion on the primeval curvature and the enormous increase of (Rf7H2)
reduces the set of plausible initial conditions.

The global properties of the world wodels may be discussed to-
gether in the type-VIII and type~IX cases. The most significant dif-
ference is the sign of curvature! type-VIII always displays a negative
curvature, whereas type-IX can admit positive spatial curvature if the
scale factors are rather close to each other. However, the cosmologi~-
cal evolution of anisotropic models typically leads to largely differ-
ent scale factors; so, if (RfVHz)in > 0, a sudden change in the cur-
vature occurs in most models (however see ref. [35] in the case of
axigymmetric models).

The evolution of the curvature is better understood loocking at
the quantity (R®/HZ) which describes the bearing of curvature on the
expansion rate. Generally spesking, amisotropic models are more in-
fluenced by curvature than strictly isotropic ones: the enormous pro-
duction of radiating enexgy by viscous dissipation contributes to the
enhancement of the curvature, which decreases wuch slower than in iso-
tropic situations or even increases in highly anisotropic modelse The
magnitude of |R*52| cen increase up to 40 orders of magnitude (see
Fig. (), so Lt can happen that |[R*/H?| ~ 1 still at the lepton era.
Therefore a single Kasner epoch is replaced by & curvature~dominated
regime, switching the universe 1o another -Kasner epoch, with the usual
exchenge in the sign of the Hubble parameters. PFor instance, in the
lepton era of anisotropic medels with (Rffﬁz)in = 16'16 we observed
up to four different Kasner epochs. However, the entropy increase due
to neutrino viscosity enhances the influence of radiation on the cos~
mological expansion. Thus, even if the oscillatory regime lasts a
long time, the single stages are not strictly vacuum stages. In ex-
treme cases this hybrid behaviour preludes a premature collapse of the
universe.

In those models Where the curvature remains small ( [R%¥/EH® |<10™2
throughout the lepton era) the cosmological evolution does not differ
very much from the flat space case. A sgingle Kasner epoch (no bounces)
is replaced by a quasi-isotroplc regime, as soon as the radiation con-
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tent of the universe is no longer negligible. This situation occurs
just at T 041010 K when the anisotropy of space is for all models A

0.82., Thus, owing to the viscous dissipation, a large set of ini-
tial conditions leads to the same state of the universe at neutrino
decoupling and the residual anisotropy can be washed out in the sub-
sequent expansion, whenever curvature permits.

The temporary optimism about isotropization 1s not however juse
tifiede In anisotropically curved spaces the curvature itself is
strongly coupled to the expansion anisotropy so that, in general, high
curvature prevents isotropization. As a matter of fact 4 is no more
a decreasing function of time in wmodels where[ R’VHZI is not negligi~
ble. This peculiar behaviour can be seen by inspection on Figs(?, 8)
where models with IR*/HZ[ ~ns 1 still at the lepton era are drawn. The
anisotropy 4 reaches a minimum during the (high curvature) transition
from one Kasner epoch to another, when all the Hubble parameters be-
come temporarily positive, but new anisotropy is afterwards pumped on
by curvature as a consequence of the |Rf7H2| decrease ir the new Kasner
epoch. In Fig.(7)the dashed lines give A; as a function of H; in
type-IX spaces for two values of the initial curvature parameter, name-
1y RYH2 = 10732 (class &) and R¥/H% = 1072° (class B). The function
clearly exhibits a characteristic behaviour for large H; : it departs
from the flat space value Ago) = 0.82, reaching a minigum A, = 10"1 -
10'2; then it increases up to A, = 1.1, and then drops slowly towards
A%o). For comparison, Rg and A, versus H; are given in Pig.(8) for
models where R;; = 10728 H, .« One can see that, whenever (Rf/Hz)f is
a decreasing function of H,, the residual anisotropy is larger than
A§°). This occurs for a set of models which exhibits two distinct
Kansner epochs within the lepton era (Hin =5 e 107> cm'T). For
104 o < H, S 103 the anisotropy is smaller than Ag°); this re~
fers to models where the universe Ls switching to a second Kasner epoch
just at neutrino decoupling.

At any rate, if the residual anisotropies given by Figs.(7, 8)
were adiabatically damped in the plasma era as in flat spaces, they
would lead to an acceptable anisotropy of the background radiation to=-
day. But, as slready remarked, the coupling of anisotropy and curva-
ture does not allow a monotonic damping. An analytlc description of
this phenomenon may be given in the adiabatic regime. Then the dif-
ferential Hubble parameters A I-Ik = Hk ~ H obey the equations:

R o] c e,.C
o --man o3 T [[m) - G)] 22TR-22
ifide = 175 1 B Ry

(3-9)
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*
Ir Ry 3> Ry >» R3 the curvature R° becomes

R* = “% ( B )2 (3-10)

RoRs

50 we obtain:

d 4 %
-WAH.‘ = - 3HAH1 + % R

(3-11)
d 2 p¥*
3t Qg3 =~ 3HAHE, 5 -5 R
The solution of equations (3-11) is
£
AH, = (R R)'1a(t)+4j R,R,R R*dtl
1 = (R4RyRg 1{ts) + 3 17273
% (3~12)
[¢]
-1 2 *
t
[+

where ak(to) are constants. Thus the anisotropy can be given as an
explicit function of time in the quasi isotropic stage (4 £ 0.5),
where one knows R OC t". As far as the integrals appearing in egs.

(3-12) are negligible, the anisotropy decays as in flat spaces
A = const K° H2 (3-13)

But the curvature term eventually prevails, then

*\2
2= 8 (2p? (%) (5-14)

where n = = in the radiation dowinated regime and n = 2/3 in the mat~
ter domlnated regime. It is important to note that RfVH increases

in magnitude like 2 R% oC $2720 55 that curvature eventually destroys
the isotropy of the cosmological expansion. More precisely, if the
matter dominated epoch started at a redshift z = 10%, then |R¥H?| nas
increased by 14 orders of magnitude since the end of the lepton era

up to today. The present day limits on the guadrupole anisotropy of
the cosmic background radiation imply that A1/2 < 104 both at photon
decoupling and at the present epoch. Consequently {Rf/Hzx should be
today less than 107% in closed and semi-closed models, unless strict
isotropy is assumed since the beginning. Therefore we have the con-
dition

*
—-f;z* < 10718 (3-15)
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parameter Hi, . The full lines refer to %uasl-flat fpaces. The dashed
lines refer to class A models with (R™/H and class B with
(R"‘/H")m = 107%, as in Fig, 7. ( Ref. 35])
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at the end of the lepton era. This is the most severe restriction in
selecting the initial data which does lead to an acceptable universe
today.

In models with |R*/HZ| < 1072 throughout the lepton era, the
vigcous entropy production mechenism does not differ very much from
the flat space, therefore egs. (2-9) and (2~10) apply here also. The
final entropy ratio 23%0) (the superscript (o) means quasi-flat) as
a function of H; is reported by the full line in fig. (9% The class A
curve exhibits a bend which is interpreted as the transition to quasi
isotropic models. When (R’YHZi ig not small the bhehaviour of Zlf is
more complicated. With reference to fige. 8 we see that the entropy
production is smaller than ngo)in models where A. <:Af°). We recall
that a relatively small anisotropy is found in models just going to
enter a new Kasner epoch at neutrino decoupling. The deficiency of
dissipation confirms that the small anisotropy is merely due to a par-
ticular dynamical configuration, asnd is unrelated to the viscous damp-
ing. Conversely, when the universe enters the new Kasner epoch the
enisotropy increases rather abruptly, and allows a higher dissipation.
For models showing two fully developed Kasner epochs, the production
of entropy is larger than E:go) by a factor =~2.,7. This is inter-
preted as the entropy enhancement due to a complete curvature bounce.
In general, when the model displays N bounces, we found

T, <2102 (2.7)¥ (class B)
3-16
=, <10° 2.nY (class A) (3-16)

However we have already remarked that, with high initial curvature
only quasi-isotropic models are allowed; on the other hand only quasi~
flat models are allowed if one wants the universe to be anisotropic
at the beginning. Thus arbitrary dissipation is not permitted: look-
ing at fig.(5)one sees that the fact of having considered models with
initially \R*/Hz{ = 10°°° rules out dissipation larger than 10° for
¢lass B and allows only Eff ~ 1 for class A solutions. Therefore the
coupling between anisotropy and curvature can rule out many dissipa-
tive models, although curvature itself does not hamper dissipation.
Some conclusions can be drawn at this stagee. Accoxding to our
results one is forced to conclude that neutrino viscosity does not
guarantee the lsotropy of the universe in the closed and semi-closed
case, even if viscous processes are very effective during the lepton
era. The primeval anisotropy is substantially damped before T ¢=1010K,
but new anisotropy 1s produced by curvature whenever \R*/Hzi is not
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negligibles As a matter of fact, in many models with suitable curve-
ture, eqe. (3=-14) applies well before the universe reaches its maximum
expansion. In particular the universe may be now in a stage of in-
creasing anisotropy, and therefore one might find a detectable aniso-
tropy a8t the present epoch if the universe was exceedingly igotropic
at the end of the lepton era. Reglistic models must be nearly flat
at T n:1010 K, unless special conditions, l.e. strict isotropy, are
asgumed. Thus models with |R*/H2 \AJ1 during the lepton era are ruled
out and the oscillatory behaviour described by Belinskii et al. [42]
must concern more remote epoch. Moreover, We observe that realistic
models must be almost flat at the present epoch, |R¥/H®| < 1074, so
that the matter density is close to the critical energy demsity &,
3H now. When the curvature is negatlve, the actual enexrgy density,
even in the closed Bianchi type IX, is less than £ ,. 4 positive cur-
vature (then €& > EC) would be a priori unlikely at the presemt epoch,
gsince it is allowed only for strictly isotropic models, for extreme
axisymmetric models [35] amd for accidental (i.e. temporary) configu-
rations.

4 strong production of entropy is not excluded, but the evolu-
tion of curvature imposes important limitations on the maximum 2:
in realistic models with an assigned value of \Rf/ﬁzlin. As found in
flat space the production of entropy is 2. ~n10'2 1n the most dissi-
pative case: the curvature of space can enhance this value if the uni-
verse is able to switch many times from one Kasner epoch to another
gt11l inside of the lepton era, but this possibility is not consistent
with the present-day isotropy of the background radiation. Generally
speaking, it seems to be easier for a general relativistic universe
to produce entropy rather than to lsotropize the expansion rate. In
this conmection two points are of the greatest importance:

a) The anisotropy-curvature coupling is an intrinsic property
of the considered wodels and it is totally independent of the viscous
mechanism. Although our approximations are unsatisfactory, the nega-
tive result concerning isotropization in curved models Iis unquestion-
able. Par from being & definite tendency of the cosmologlcal evolu-
tion, the isotropic era of type-IX and VIII spaces is nothing else but
a long span between two successive bounces.

b) The existence of earlier dissipative periods (in the very
first quantum evolution) does not change the major conclusionss Wo
matter how small the residual anisotropy can be, new anisotropy will
be eventually produced if the universe is (anisotropically) curved.
Only stringent limits on the initial curvature can eliminate this phe-
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nomenon .

4, Bianchi type V Universes and no conclusions

The contradictory conclusions on the isotropization of flat and
closed spaces compels us to check what neutrine viscosity can really
offer to cosmologists by looking at the behaviour of open Universese
Here we briefly consider diagonal Bianchi type V spaces as a first ex-
ample of (isotropically curved) open topologies. They constitute the
natural generslization of the k = -1 Friedmsn models, and the Eingtein

equations for such spaces take the form:

W m s Z i l(e-n+gN,E
R (4-1)

s+ o ean OB - £ - D

Where, like In type-I spaces, the Llsotropic ourvature allows & system
of only two differential equatlons to he written down. Equations
(4-1) can be integrated in the lepton era using the same numerical
technique exposed in the preceeding chapters. The space curvature is
now R*= -6/R?. The evolution of the curvature parameter R*VHZ has

been found to be governed by the law:

R* /R ( Hin

2= () (=
n

Thus one observes that the enormous increase in the curvature found

in closed spaces does not occur here. A4As a8 matter of fact, the law

(4~2) describes the typical behaviour of vacuum steges and shows that

the curvature iz not influenced by the dissipative process. When high

curvatures are reached (Rffﬂzfu 1) a saturation phenomenon takes place,

50 that R¥MH° approaches the 1limit value -6 and the universe enters

the Milne epoch, where € L 3H2. Models in which this transition

happens too early (inside of the lepton era itself for example, like

in fig.(1), ref. [36]) should be however ruled out since they lead %o

a too low matter density at the present epoch. The damping of aniso-

tropy is governed by the law AR 6H2 = const, no matter how large the

curvature is, even in the subsequent evolution. This implies that

the coupling between anisotropy and curvature does not take place heree.

Moreover, since R & %t in the Milne stage, this law leads to a low re-

sidual anisotropy in high curvature cases. Generally speaking, the

mechanism producing entropy seems not to be very sensible to the change

4/3
| -
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of curvature, and we obtain here the game results as in egs. (2-9) and

(2-10), except in cases wWhere the Milne epoch begins inside of the

lepton era. Then, owing to the fact that the expansion is faster, the

production of entropy is reduced by a factor of oxrder 3 with resgpect

to guasl flat spaces. Consequently entropy enhancements as large as ™~
1012 are possible with suitable chosen Initial anisotropies.

We can conclude that in type-V spaces neutrino viscosity could
explain both the large radiation entropy in the universe and the de-
gree of isotropy of the cosmic background radiation. They could surve
as examples of models realizing the principles of chaotic cosmologye
Of couxrce the crucial point for this conclusion is the absence of a
curvature~anisotropy coupling.

It is then natural to ask oneself why the "Epicurean" program
works so well in Bianchl type I and V and not in type IX and VIII. The
reason seems to lie in the structure of the Riemann tensor, which is
anisotropic in type IX and VIII and isotropic in type V (mull in type
I). Only the anisotropic part of the Riemann tensor is coupled to the
expansion anisotropy. The conclusion, which is wmoreover supported by
a preliminary investigation of the more general (i.e. anisotropic cur-
vature) open models, can be stated as following: whenever the expan-
sion anisotropy is purely kinematical, it is definitely damped by dis-
sipative processes or at least by the adiabatic law AR6H2 = conste
However, in the most general homogeneous world models (types VI, VII,
VIII, IX) the anisotropy resides also in the intrinsic geometry of
space, so it may be restored after any dissipative process, unless
strong upper limits on the primeval curvature are posed. Selecting
special initial conditions for an presently acceptable universe is
then required and the philosophy of chaotic cosmology turms out to be
thereby infirmed., It does apply only to gquasi-flat spaces, whereas
the presence of a (general anisotropic) curvature makes the isotropi-
gation of the cosmological expansion a difficult (if not impossible)
task.

Going back to the Iintroductory fige 1, I believe that the iso-
tropy of the universe is still to be explained, if theoretical cosmo-
logy could possibly ask the universe for such an explanation.
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COSMOLOGICAL MICROWAVE BACKGROUND BLACKBODY RADIATION
AND PORMATION OF GALAXIES

Ya.B. Zel’dovich
Institute of Applied Mathematics, Academy of Sciences USSR, Moscow

It is now firmly established that at the early stages of the e-
volution universe was filled with hot dense matter. Discovery of the
cosmological microwave background radiation by Penzias and Wilson (1965
and the observationsl indication that it has thermal spectrum was a
great triumph of the big bang model of the universe (Gamow (1948),
Peebles (1971)). Problems connected with observational investigation
of the microwgve background radiation were discussed by R.B. Partridge
in his lectures. Here I would like to concentrate on physical pro-
cesses which could leave some imprints on the spectrum and temperature
of the microwave background radiation.

Let me first briefly Heview the basic propexrties of the electro~
magnetic radiation which is in equilibxium with wmatter.

1e Radiation in equilibrium with matter

In the homogeneous and isotropic world models (Friedman or Le~
maitre models) the microwave background radiation should have, in the
first approximation, a blackbody spectrum (Peebles (1969))

n( ) (occupation number ) _ 1 1 (1
= \density of photons) = “HZ = w0 )
where x = ﬁ; e The total number density of photons is
o0
2 S 3 3‘1' 2 3 =3
No = nd’p = T n{x)x“dx = 20 T’ cm 2
¥ ?E;:;;;g_ ) ’ (2)
and the energy density is given by
00
2 PES ~15 4 -3
€= I Bvna®P = 7.5+ 1071 24 erg cow 3
el (3)

At T =3K, N ¥ = 540 cm"z, Ey= 0,3 ev cm’3, on the other hand the
number density of electrons Ne and protons N_ is of the order of
Ner\»N «»:10'6 cm‘3. It turns out that photons are the most numerous
particles in the universe. :

The Rayleigh-Jeans part of the spectrum is defined by the con-
dition x << 1. In this region n = 1/x and intensity of radiation is
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Red 2kT
F 4
v [cm 5 Hz] 2 " (4)
In the Wien region x >» 1 We have n = e ~% and
W _ ohvo b2 -
FV =—2-—-e kT Nxae x . (5)

C

We may now agk, how and when during the expansion of the uni-
verse the equilibrium was established. In the approach to egquilibrium
emission and absorpiion of photons played an important role. These
processes could be described by a kinetic equation involving Einstein's
absorption coefficient A and emission coefficient B (Zel’dovich (197%))

2o n(v,t) == &n + B(1 + n), (6)
here B+ n and B represent correspondingly the contribution due to in-~
duced radiation ané spontaneous radiation.

For a two level system 4 is proporiional to the number density
of unexcited states and B is proportional to the number density of ex-—
cited states and as is well known B = A e *. Using this relation and
taking é%% = 0 it is easy to obtain the eguilibrium distrivution

ThEeE= (7

from which it follows that
n= o . (8)

In plasma where both electrons and protons are present A and B
are proportional to the product of number densities of electrons Ne
and protons Np,

NN NN
Bw—%—ﬂ-—e"‘, Am—%P—. (9)
X X

The kinetic equation (6) could be written in the form

;%%-: -(A-Bn+B=~(A-B)(n-~ neq)’ (10)

where n__ ig given by (8). The relaxation time T=7 1 5 1s glven

eq
by

3
1 X (11)
~ -
- B NeNP

Tn order to check if equilibrium existed at some epoch z4 We ine
troduce the notion of optical depth

T =

A



115

z=0
dt
Optical depth = D = 5 {12)
Z=Z1

Let us remind that 2z = O corresponds to the present epoche If a medi-
um is transparent then D < 1.

During the radiation dominated epoch z ~:t'1/2, go 4t = - % E%
and NeNp ~ (density of matter)z ~ 28, Assuming x = const, we obtafn

: ¥ XN
[~ g (13

It turns out that after ennihilation of e+, e pairs, at the beginning
of radiation dominated epoch, when z ~ 108, D is of the order of uni-
ty for x ~ 1, i.es for hv ~ kT, it means that the electromagnetic
microwave background radiastion was formed very early.

We should take into account, beside the absorption and emission
of photong, another importent process, namely the Compton scattering.
In the nonrelativistic limit the cross sectlon of the Compton scat-

tering is

2 2
BT (£5) = 6.65+ 10725 cm?, (1)
mee

The mean angle of scattering is close to /2 and so if the initial
distribution of photons was anlsotropic, then after the first scat-
tering the anisotropy will be reduced by 1/2, after the second scat-
tering by 1/4, etce At z = 1000 (roughly the recombination period)
Ne ~ 3 -103 cm“3 and the characteristic time between two scatterings,

Gy =

which is also the characteristic time of smoothing out anisotropy, is

0%, (15)

T~ ~ g

G&%ec
but the cosmological time corresponding to 2z = 1000 (characteristic
time scale of expansion) is t = 10 3 gsece We conclude therefore that
at z = 1000 any anisotropy is immediately smoothed out.

Let us now analyze how the spectrum changes due to scattering
of photons with electrons. In the classical description (Thomson scat-
tering) electrons oscillate with the same frequency as the incoming
wave and the frequencles of incoming wave and scattered wave are equal.
It is not so in the quantum case. An electron which was initially at
rest Iintroduces & shift in the wavelength

h

i 0 (1 - cos &), (16)

A=, =
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and the relative frequency shift is therefore

V- Y, h v
vV "~ "ue an

(Astrophysicists use frequency V= 1/P instead of w = 291V , and
therefore they use h = 6,62+ 1G‘2? erg seca.)« Even in the classical
case, if the electron has nonzero velocity (its change during scat-
tering is neglected) then

AV v
l“rl<a’ (18)

and the shift depends on the direction of velocity (Doppler effect).
In the first order in v/c the Doppler effect results in broadening of
the spectral lines (Fig. 1).

Pig. 1+ First ordexr Doppler effect broadens spectral lines

The shift of the whole spectrum is of the second order in v/c and

2
—Ai = y = kT . (19)
N A
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In thermal equilibrium the average Doppler red shift (19) is compen-
sated by the quantum (Compton) blue shift (17). Obviously, the Planc-
kian distribution of photons is not changed by the scattering if the
electron temperature is equal to the temperature of radiation.

Pig. 2. Shift of the spectral line due to the second order
Doppler effect

Tet me now discuss the situation when radiation is not in equi-

Iibrium with matter.

2. HRadiation not in equilibrium with matter

The non-equilibriuvm situation could be described by the Kompa-
neets-Weymann kinetic equation (Kompaneets (1957), Weymann (1965)).
This eguation cen be used when

a) distribution of radiation is isotropic, and

b) kT, < mgc,

¢) hv & m_c? but the ratio of photons with h v < kT and

hy > kT is arbitrary, when Te is the temperature of electrons.
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These conditions are of course satisfied forxr z <108.
The Kompaneets-Weymann equation could be written in the follow-
ing form

5t = P ';;%—73“5 VB e talar ) (20)

[s]
Mo

This equation has an important property, it does conserve the total
number of photons, since

aN
dtx ___,_adT gn @3 = S[%% a> 3 = const K% viav, (21a)
but
ch 6N kT _  n
{38 v2av = —3= S%{v“[‘h—ew +an o+ ”]}"" =0
m_c
(21%)

When Te > T, the Kompaneets-Weymann equation reduces to

A A 4 An KTe 4 a ,.47%u(t,%)
on L (Pt ) = N G — (x L
nt mecz vZ vy ( DY e T mecz ';2- Vx ( X )

(22)

It is not so difficult to find a general solution of this egquation.
Here however We are interested only in limiting cases. PFor x <K 1,
fp_ g = 1/x, we obtain
—NGkTe L »fi—(-x)—-zcns € n (23)
Rt = e n 2 - e T 2 ¢

m c x X m_C
e

kT
Let us introduce new variable y = S oW, G ;—% dt; then we get
e

-2
Np_g =10, € v . (24)
Because np_; = 1/x = k¥I/hv  we have also that
-2
Pog = T © . (25)
Using the general expansion for the energy density we obtain

€ = g%, (26)

_ 4
where 60 = a To.

When x > 1, in the Wien region, from (22) we obtain
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3Ny kTe 2
T =c N, GTTC—Z—X Ny (27)
e

and solving this equation we get
2
= 'y
nW = no e . (28)
an
Comparing (24) and (28) and taking into account that-a¥3£ = 0, we see
that interaction of photons with hot electrons redistributes photons
from the low frequency region of the spectrum to the higher frequencies.
Let us express our result in terms of measurable gquantities. We
usually measure Tp_; and € Dbut not T,. From (25) and (26) we find

that
12
€ = €oe4y = aTi’e4y = aTé_Je ., (29)
and when y is swmall
€ = aTf (1 +12y) » (30)

The non equilibrium processes could substantially Influence the spec-
trum of radiatjrn and noticeably change the energy density of radis-
tion.

log F,

le; v
Fig. 3. Distortion of the initially blackbody spectrum (dashed line)
by Compton scattering of photons on hot electrons
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How does the temperatuxe of electrons change due to interactions
with radiation? In the general case, far from equilibrium, the Brems-
strahlung process is not efficient enough to establish equilibrium but
collisions of electrons with themselves "maxwellize" the distribution.
S0 we have that

relaxation time relaxation time
( of electrons ) K ( of photons ) (31)
which could be explained be "two reservoir® picture. ZElectrons ap-
proach the eguilibrium wmuch faster than photons, Té/ﬁar ~ 10—8-10-9.
When Ne << 1, the interaction of electrons with radiation is
more complicated., This problem was investigated by Dreicexr (1964),
Peyraud (1968), and Zel’dovich and Levich (1970). Using the Kompa-
neets equation (20) and the definition of € we get
( Increase of energy density )

of radiation in a given
volume
Gyl a6 Loss in energy density
T e ah? g n(n + 1) \;4‘d\) = -ﬂ-e = (Of electrons in the
0 same volume
(32)

The stationary value of temperature of electrons can be obtained from
the condition-3& = 0, which leads to

zhv dv
n(net)viav 2 [ry(r,+ 22250

tat
S = = (33)
e 4% j'n y3awv 8k fr,av

This result could be also applied to plasma surrounding a quasar.
Even a modest intensity of radiation at very small frequency can very
efficiently heat the electron component of plasma, due to the appear~
ance of ™2 in the integral (33).

Tet us now discuss a few examples of interest for cosmologye.
At the moment of recombination (z = 1000), kT = EI/-ln(azﬂe) where
a, - the Bohr radius of hydrogen atom, a = 5 °10'9 cm, EI = 15,5 eV =
= 160000 X, so T = 4000 K. If there was no reheating of gas after
the recombination was completed, photons would not interact with bound
electrons since that moment. Radiation and matter is no more in ther-
mal equilibriume. But the cosmological expansion proceeds in such a
way that it preserves the equilibrium spectrum even without any inter-
action between radiation and matter (Peebles (1969)).

This might be, however an idealized picture. If due to some
violent processes after the recombination the plasma was reheated and
ionized, this could have introduced a distortion in the spectrum of
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the type discussed above (see Pig. 3). These distortions in principle
could be observed.

In our previous considerations we introduced a parameter y, which
describes distortion in the spectrum (comparing the bolometric energy
density and the intensity in the long wave region). From the observa-
tional data it follows that y < 0,02, then € < 1.2 alTj ; (see De
Zotti, this volume). Let D be the optical depth of the medium. We

k k T 1
have the relation y = X cN, Op m;z dt = —gz \cN_ Gpdt = DE%CEE .
On the other hand for D we have
%
D = 0.03 [(1 + 2?2 1] Q12 (34)
where Q= §/ ®.piy 18 the density parameter. If =1, z = 30

then D = 5, and if (=1, z = 10 then D = 1. This result means that
if the secondary ionization took place after z = 10, the universe would
be transparent and spectrum of radiation would not be distorted.
Consider now the case of hot plasma and let the fewperature of
its electron component be 106 X. Then kTe/mec2 ~ 1/5000 and therefore
due to Compton scattering the radiation will be very efficiently iso-
tropized if 2z of the moment of jonization is greater than 10 (since
then D > 1), but the scatiering will not produce any noticeable disg~
tortion in spectrum as long as z of the ionization moment is less than

100 (since then y & 0.006, if @R =1,

3, Processes in a rarefied plasma

When collisions between particles and Bremsstrahlung process
(free-free emission) could be neglected but the Compton redistribution
of photons takes place, then at the restricted equilibrium occupation
number density is given by the Bose-Einstein (B-E) formula

n(v) = —E:—,;_L—~ (35)

e kKT = 1

where = a(N,€ } is the chemical potential. This distribution
describes an equilibrium state without absorption and emission. One

can check this by inserting (%5) into the Kompaneets equation and no-

ticing that in the general case of M £ 0, still %ﬁ} = O The dise

tribution (35) has a shape different from the Flanckian spectrum, which
is the limiting case of -0, Now when hv/kT = x << 1
1

2p.g = e,u,/kg} 4 (28)
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(in the Planckian case we had np_; = 1/x), and

B-EyR~J ~
F v ’ \)3 (37)

(in the Planckian case we had F?;R’J ~ v3y.

£

>
v

Pig. 4. Comparison of the Bose~Einstein distribution (dashed line)with
the Planck distribution (so0lid line) of the same temperature

More detailed analysis, which takes into account the Bremsstrah-
lung process, leads to the conclusion that the distortion of the spec-
trum introduced by energy injection in the plasma at z <,106 should
survive and it should not be smoothed out in the epoch when the Bose-
Einstein formula with £ O describes distritution of photons.
(Zel’dovich and Sunyaev (1969), Zel dovich, Illarionov and Sunyaev
(1972), Zel’dovich and Novikov (1975)).

The relexation time depends strongly on frequency and there al-
ways exists some frequency band in the Raylelgh-Jdeans part of the spec—
trum foxr which ‘trelaxation << 1, and the thermal equilibrium between
photons and electrons is established. This exchange of energy pro-
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duces a dip in the spectrum (see Pige 5).

log F,

Y

log v

Pige 5. Characteristic distortion of blackbody spectrum (dashed line)
caused by early release of energy

The important conclusion is that in a real universe energy injected
into plasma due to early damping of acoustlic perturbations or evapo-
ration of black holes or annihilation of antimatter, causes a definite
distortion of the spectrum. ZIate energy injection and secondary ijoni-
zation, due to guasar explosions etc. leads to quite different distor-
tion of spectrum. Careful measurements of the spectrum are therefore
very importent for cosmology!

4. Small perturbations of the Friedman-Lemaltre models

So far we were interested in the physical processes which could
influence the cosmological microwave blackbody background radiation.
In our considerations we assumed that the universe is homogeneous and
isotropic and the perturbations were produced by energy injections
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only. This is of course an idealization. We know that in small scale
the universe is neither homogeneous nor isotropic, but in a sufficient-
1y large scale (several hundreds of megaparsecs), according to the
present observational data, the universe is surprisingly well described
by the Friedman model (Longair (1974)). To be more realistic and to
explain the existence of galaxies and their clustering we shall now
discuss different modes of perturbations of the Friedman-Lemaitre mod-
els.

We already noticed at the beginning that the number density of
protons and other baryons is much smaller than the number density of
photons. Since at the vexry early stages of evolution, when tempera-
ture was high enough, baryons and antibaryons were in thermal equilib~
rium, we have to assume that initially

B=(14+10% ¥ (38)

where B and B are respectively the number density of baryons and anti-
baryons. Now in a fachionable theory of entropy perturbations, it is
assumed that this excess is not uniform in space and at large scales

B=(1+102+10") F (39)

but at small scales the excess of baryons could be larger than 10'9.
Such situstion would lead to entropy perturbations of the order of 1%
{corresponding to the ratio 10’11/10‘9) after annihilation of baryon-
antibaryon pairs. When the ratio B/B is exactly constant everywhere,
other types of perturbations could be considered.

Let us look at the situation near the singularity, where the
metric has an asymptotic form

5% = at? + a2(t) € uw(x) axax” + b2(%) k. (x)dx*ax” (40

Since near the singularity matter should be very hot, therefore for
equation of state we can take the relation p = 1/3¢ , valid for an ul-
trarelativistic gas. From the Bingtein’s equation we can deduce that
an~t”2 bt oand

P
S(t) = 32;%2 vy - (41)

where € is the density of matter and P is the scalar curvature

calculated from the g.v» part of the metric ( MV = 1, 2, 3) of the
t = conet hypersurfaces. The first term in the expression for ¢ is
the leading Friedmanisn term and the second describes density perfur-
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bations. The leading spatial part of the wetric g .. could be decom~
posed into a flat, spherical or pseudospherical metric y,. and a
perturbation h/uv, s0

If h/Lv is small, it corresponds to density perturbations and gravita-
tional waves, which propagate on the isotropic and homogeneous hack-
ground. If h . is not small, non linear effects could play an impor-
tant role. Sufficlently dense small regions could collapse and form
small primordial black holes (PBH). The PBHs were first comsidered by
Zel’dovich and Novikov in 1966. Recently formation of PBHs in an ide-
alized case of spherical perturbations was studied numerically by Na-
dyozhin et al. (1977) (see also Carr and Hawking (1974) and Carr (1979
As was shown by Hawking (1974), small black holes would evaporate pro-
ducing bursts of X~-rays. Whenh h v is not small in large regions then
these inhomogeneities collapse and produce a massive PBHs. Observed
isotropy of the microwave blackbody background radiation indicates that
the initial perturbations were small on large scales.

In the theory of adiabatic perturbations one usually assumes that
h ,yvis very small, h uy ~ 1% - 0,1% .+ In a classical paper Lifshitz
(1946) analyzed small perturbations of Friedmen models. For the Fou-
rier transform of h uv in the case of open models he obhtained

b uu(k) ~ ’\(?.'sz{i;r'lz1:"‘2/1/_3_l olkX | (43)

where d 1) = at/a(t), 1(t) m/t1/2 and k is the wave vector. h,, de-
scribes an oscillating pexturbation of metric with decreasing ampli-
tude. Density perturbations first increase and after some time oscil-
late. Formula (43) is valid for reletivistic gas, and in pariicular
for radistion dominated plasma i.e. when z > 1000, Density pertur-
bations of masses smaller than the Jeans mass My (M; = %ﬁtvi%(a"ﬁ) )
behave as acoustic waves. The Jeans mass just before the recombing-
tion is of the order of 1017 Mge Density perturbations of small masses
are strongly damped, due to radiation induced viscosity. The smallest
mass which survives through the radiation period until the recombina-
tion is called the Silk mass Mg and 1t is of the order of 1013 M@
(Silk (1968), Peebles and Yu (1970), Weinbexg (1971)). If N > My the
perturbation ig unstadle and it will grow larger and larger.

During the damping process in the radiation epoch energy is in-
jected from plasma to the radiation. As was already mentioned above
thie in principle could leave a noticeable imprint on the microwave
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background radiation.

5 Adiabatic theory of formation of galaxies

Let us assume that the ratio of the number density of photons
to baryons is determined by some basic physical theory (charge symme-
try, baryon nonconservation etc.) and it iec everywhere the same. We
will consider 8 metric perturbations small enough to be treated in the
linear approximation with a broad smooth featureless spectrum. After
the radiation epoch, at the moment of recombination, the spectrum has
a cutoff at Mg ~l10{3i1 Mge After the recombination the Jeans mass
drops drastically to MN; ~10° Mg, so all the density perturbations
which survived through the radiation epoch could now grow.

We will assume that initial conditions specified at the moment
of recombination {z = 1000} are such that

(peculiar ) = 3(¥) 4; (Hubble velocity on]

velocity the same scale

(density perturbations) = is;g- LL 1 (44)
VT no initial
Vzu =0 ( vorticity )

Now at z = O, S?/g > 1. Therefore there existed a period

Zpec >z > 2y when the linear theory adegquately described the evolu-
tion of perturbations, but this period ends before the present time.
In that period for perturbations with masses much larger than MjV105M@
effects of pressure 8re negligible and therefore there is no disper-
gsion @ w /dk = 0. We can describe the density perturbation assuming

that

-g—?i ~ sin kx ewt (45)
then for « we get
oes s - (B BV~ G0

Following Lifshitz (1946) and Bomnor (1957), who made similar calcula-
tions in the Newtonlan theory, we can divide perturbations into two
classes

transversal waves =)> vortical perturbations
longitudinal waves = density perturbations.
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Let S= S ¢/¢ =amd "g" stemds for the growing mode and "d" for
the decreasing mode, then in dust filled universe

~ +2/3 ~ 1/3
Sé t ug %

1 o =4/3 (47)

Sd ~tT

for density perturbations and

Yg

S=0 u, ~ 203 (48)

for vortical perturbations. Therefore after some time the growing den-
sity modes will dominate and finally we get

§ = 2/ S int (P

1/3 =
51/ Uints (49)

u
*‘“
V@ =0

forxr Zroe > I > Zqe But the linear theory is not adequate, since we
have to consider situations when S >1.

4 natural way to formulate an approximate theory, exact in the
linear region and good enough in the non linear regime, 1s to use the
Lagrangian description (Zel’'dovich (1970)). In that description the
position of every particle (its Eulerian coordinate) T is given as a
function of time t and the initial position (Lagrangian coordinate)
of the particle ? .

The position vector T corresponding to the growing mode of per—

turbation is then given by
soaw) [ 54422 % (5)] =2 [§+¢35 (%)) 60

(Here we consider the case of &2 = 1)e. The first term a'g describes

—

the Hubble expansion and the second t4 3@1 describes the displace-
ment of the particle from its unperturbed position. The perturbation
ceused by gravitational Interaction is of the potential type, so

Y o= Vp o (51)
The velocity is given by
T - & -1 - - .
L3P 43P F cmF 49 (52)

so that velocity perturbations are growing according to (49). Using
{50) we can calculate the volume element
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Eulerian volum _ 33 2 2/3 2¢
(element e)_dr=tusk+t/_—.___=.rd3? (53)
%1 %
where J is the Jacobian. Therefore the density is given by
o~ - t
$C5,m = (88 - <z L), (54)

(1- o623y (1= 623y (1- §t2/3)

where We have qud a coordinate frame in which J is disgonal and
&Ky p, Yy = -gd) a =1,2,3 are ordered so that «>»@3 2y . BSince
3

¢ can be determined from the initial conditions we can also calcu~
late the value of oL for every particle. The condition 1-ti2/3oci=o
determines a moment when the i-th particle will encounter infinite
density. It is important that density becomes infinite because of
vanishing of the denominator, i.e. due to contraction in one direction.
Therefore the density becomes infinite on a suxface on which the sur-
face density is finite. A%t t — 1%, ¢ —> 090 but the gravitational
potential is finite and also the gravitational force acting on the
particle is finite. Therefore at least gqualitatively this approximate
picture is correct. Let us call ¢( g,t) as given by the formula
(54) S pye Doroshkevich and Shendarin {1978a) made exact calculations
of the density needed for the gravitational field to produce the mo-
tion of particles described by (50) and they obtained

o O - (xpraxr prIE + 2 apr il
HEEDED (1 - «t?3)(1 - p/3)(1 - g e?/3)

(55)

We see that gTH is a good approximation of ?NEEDED‘

The main limitation of the theory is the fact that it gives a
one dimensional singularity. If the initial cloud consists of stars
they go through the formal surface of infinite density but when the
initial cloud is just a cloud of hydrogen atoms then approaching the
surface of infinite density atoms collide and form a shock wave. There-
fore in the case of a cloud of gas we should get the following picture:
in the general case, smooth initial perturbations will evolve, in the
nonlinear stage, into ellipsoidal configurations with rapid contrac-
tion along the minor axis forming a pancake like structure. In the
center density will grow and at some point shock waves will form and
they will move out along the minor axis. The central part of the pan-
cake will be therefore composed of a dense cold gas. The gas which
passed through the shock wave will be hot and ionized. The pancake
which corresponds to cluster of galaxies, will theredfter fragment in-
to smaller pleces - galaxies, globular clusters and stars (Doroshke~
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vich, Sunyaev, Zel’dovich (1974), Zel dovich, Novikov (1975)).

The main prediction of adiabatic theory of formation of galaxies
is that clusters of galaxies should form a net type structure. This
prediction is tentatively supported by recent observations (Einasto,
Joeveer (1978))s There are many N-body calculations which did not
predict the net type structure. It is so because in those calculations
the spectrum of perturbations is different from that which we have
chosen in our analysis. More precisely, in the N-body calculations
the fact that all perturbations with masses smaller than the Silk mass
are damped out is mnot taken into account (the spectrum is not cutoff
at short wavelengths). Numerical calculations of the evolution of
perturbations in the two dimensional case done by Doroshkevich and
Shandarin (1977) (1978b) also support the pancake picture and the pre-
dicted two point correlation function 1s in a good agreement with ob-
servational data., They are now analyzing the three point correlation
functione.

There is one important point which should be clarified, namely,
from observations we know that galaxies rotate. On the other hand the
Helmholtz-Kelvin theorem states that the potential forces could not
produce angular momentum. This fact was the main psychological motiva-
tion of the vortex theory. In our theory however, the Helmholtz-Kel-
vin theorem is violated due to shock waves, and if the shock wave is
not flat then even the initially potential, non vortical motion of
gas will turn into vortical motion. So though initially &3 = O after
the gas passes through the shock wave &S # O (Doroshkevich (1972)).

We can also make some observational predictionse. The gas in
pancakes consisting mainly of hydrogen could emitt electromagnetic ra-
diation at "\ = 21 cm, this line could be redshifted to 2 - 3 m, I
is now up to radioastronomers to find out if it really exists.
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COSMOLOGICAL ANISOTROPIES IN THE MICROWAVE BACKGROUND

R.B. Partridge
Haverford College, Havexrford, USA

1e Introduction

The last twenty years were rich in discoveries which have revo-
lutionized cosmology. Thanks to observations of gquasars and radio
sources, to nucleocosmochronology, X-ray astronomy, and the redetermi-
nation of the distance scale, cosmology is now an established branch
of science, with a firm grounding in observations. DPerhaps no discov~
ery has hsd so decisive an impact as the cosmic microwave background
(henceforward abbreviated cmb), first detected by Penzias and Wilson
in 1965, Even before the cosmological origin of the microwave back-
ground was established (see Peebles, 1971; Weinberg, 1972; Partridge,
1975, for reviews), work was begun to make use of the observations to
answer important cosmological questions. The achievements of theoret-
icians (some of whom are here at this school) are impressive in this
respect; we know far more about the large-scale structure and evolu~
tion of the Universe than we did in 1965. These successes are even
more remarkable when we consider that the observational data on which
these results rest are really very few -~ Wwe are talking about at most
twenty observational papers.

In general terms, it seems to me that the cmb has proved useful
for two reagons: the essential parameters (temperature and isotropy)
can be measured to high precision, unlike many othex cosmological
quantities; and the cmb provides, in principle at least, a probe of
the properties of the Universe at an epoch predating any structures
We can now observes

Let us consider two examples of the first point. The tempera-
ture of the radiation is kmown %o be T = 2.8 K, with an error of 10%
or lesse. A simple projection of this result into the hotter denser
past of the Universe permits a calculation of the rate of nucleosyn-
thesis of light elements in the Big Bang (Wagoner, 1973). Good agree-
ment is obtained with the observed abundance of He, thus giving strong
support to the Big Bang Theory. 1In addition, these results provide
an observational test for a vital cosmological parameter, the mean
mass density of the Universe, based on the abundance of deuterium (Gott,
Gunn, Schramm and Tinsley, 1974). It is important to note that an un~
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certainty in the value for the temperature of the radiastion as small
as a factor of two would destroy the utility of the deuterium test.
Likewise, accurate measurements of the large angular scale isotropy
of the radiation can be used to limit sharply the number of possible
anisotropic cosmological models - as already reported by Malcolm Mac-
Callum. While the high degree of isotropy of the cmb does not prove
that the Universe has a gimple Friedman form, it does eliminate many
other models which are consistent both with General Relativity and
with other astronomical observations. (It shonld be mentioned that
the abundance of light elements in the primordial material can fix
even more restrictive limits for some Bianchi types - see Barrow,1976-
but again, these results are sensitive to the value of To.)

The argument in this second example depends on the fact that the
radiation we observe now was emitted in the distant past. This fea-
ture of the cmb comes more strongly to the fore when we consider the
central question of my lectures -

What cen observations of the cosmic microwave background tell

28l VYV EEES T IS NINE Sl S

us gbout the oxigin of structure in the Universs?

Potentially, careful observations of small angular scale aniso-
tropies in the cmb can reveal a wealth of detail about the origin,
nature and growth of the density perturbvations which eventually grew
into today s galaxies and clusters. I will develop the commection be-
tween density perturbations and observable temperature fluctuations
in the cob in somewhat more detail in a subsequent section. Before
embarking on a detailed discussion, however, I want to emphasize that
the promise of thege observations has not yet been realized, since
the observetional material is not yet good enough. dJust how galaxies
and clusters formed remains one of the most important unanswered gques-
tions in cosmologye

2+ Galaxy Formation

To make this point clearer, it is worth considering briefly and
gualitatively the present view of galaxy formation and the problens
this view encounters. In very rough form, one conventional theory
holds that small density fluctuations early in the history of the Uni-
verse grow in amplitude until gravitational contraction, followed by
fragmentation and star formation, takes place (for reviews, see Rees,
1971, Pield, 1975, and Jones, 1976). Contraction commences at an

epoch given by
£, = ———3W
f 32G¢
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Where ¢ igs the density within the pexrturbation. Star formation pre-
sumably occurs in the interval tf -2 tf {though more detailed models
such as those of larson, 1974, 1977, suggest later and wmore gradual
onset of star formation). For reasonable values of ¢ and typical
cosmological models, values of tp lie in the range 108-109 yrs., cor-
responding to a redshift of formation, z,~ 3-30. This model thus re-
quires the existence of density perturbations of amplitude A¢/9 > 1
and of galactic mass at an epoch like 1082109 yrs. 4s is well kmown,
the classic and important work of Lifshitz (1946) has established that
the amplitude of density perbturbations grows very slowly in an ex-
panding Universe in the linear regime:

AR(z)/Q, < (1 + 2)7"

In an open, low density, Universe even this slow growth ceases at &
value of the redshift given by 2z + 1 ~ Q_1 = ?C/go, where ?C is
the critical density given by-%?gé-(Sunyaev, 1971)« By themselves,
these results would present no problems, since one could in principle
start with arbitrarily small perturbations if one started at suffi-
ciently large values of z. But in & hot expanding Universe there is

a serious constraint because no growth in the amplitude of density
fluctuations is possible until the cosmic background photons cease to
interact with the matter content of the Universe, at z =~ 1000, We
will have & chance to look at this argument more carefully later; here
I want only to emphasize that there is not much time for the density
perturbations to reach an amplitude of unity or greater. If fthis con-
ventional picture is correct, values of AQ/¢ =~3 x1072-3 x 1072 are
required at z ~ 1000Q.

As we shall see it is not easy %o account for density perturba-
tions of order 102 at z =~ 1000, Nor does it appear that we can ease
our problem by imagining that galaxies form at much later epochs, so
that the density perturbations have more time to growe. The few rele-
vant observational results (Davis and Wilkinson, 1974; Partridge,1974)
suggest Zp > 7. Furthermore, late galaxy formation seems excluded
in the presently-favored low density models by the argument given
above (Sunyaev, 1971).

Of course it is always possible to abandon this picture. Indeed,
there seems to be growing uneasiness about the conventional view which
holds that all galaxy formation occurred at a single epoch in the past
(see various papers in Tinsley and Iarson, 1977). New models may be
needed in this volume, Zel 'dovich discusses in detail the theory of
"pancakes'" developed by the Moscow group. In this picture, the first
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condensations to collapse gravitationally are far larger than galaxies
~ galaxy formation occurs later. Initial density fluctuations are
still called for in this theorye In both this and the theory described
previously, fragmentation is the primary mode of star and galaxy for-
mation. The opposite approach is that of Press and Schechter (1974),
who argue for gravitational condensation of preexisting smaller units,
which generates condensations on larger and larger scaleg as time goes
on., In this same vein is the suggestion of Rees (1977) that galaxies
formed only after an initial generation of stars were formed. Since
gravitational contraction (of collections of stars in this case) is
still involved, perturbations of galactic mass are still required -
but the epoch of galaxy formation can be later without violating the
observational limits established by Davis and Wilkinson (1974).

As many authors have emphasized, we are very far from answers
to the general gquestions of how and when galaxies formed. There is,
therefore, considerable interest in the possibility that observations
of the cmb will permit us to say something about the nature, scale and
amplitude of protogalactic denslty perturbations.

%+ The Last Scattering of cmb Thotons

When we observe the cmb, we are seeing back to the surface of
last scattering, the region (or epoch) at which the photons last scat-
tered from matter. (One can think by analogy of observing the photo-
sphere of the sun.) We can be certain that the surface of last scat-~
tering does not lie further away from us - or at an earlier epoch -
than z ~ 1000, for at earlier times the matter content of the Universe
was still lonized and the radiation interacted closely with the watter
via the mechanism of Thomson scattering (Peebles, 1968). Thus the
epoch at which the matter content of the Universe recombined to form
neutral atoms is frequently taken as the surface of last scattering.
Since the recombination of matter is not instantaneous, but rather oc-
curs over a range of redshifts Az/z of order 0.1, the surface of last
scattering is not sharply delimited. It might in fact be better to
speak of a shell of last scattering?

While 2 ~ 1000 is a firwm upper limit on the redshift of the sur~

% Bven though the recombination and consequent decoupling is not in-
stantaneous, to first order the thermal spectrum of the cmb is main-
tained. This result is a consequence of ithe wavelength independence
of the primary scattering wmechanism, the Thomson process. See the
contribution of Zel'dovich for detalls and modifications.
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face of last scattering, there is a possibility that the photons last
scatter at a much smeller redshift. If the process of primordial stax
formation or primordial galaxy formation is energetic, the matter con-
tent of the Universe may be reionized well after z ~ 1000, and Thomson
scattering of the cmb photons may again become importent. If reioni-
zation occurs, and if the optical depth is sufficiently high, the sur-
face of last scattering will then be at a much lower redshift, and our
view back to a redshift of 1000 will be blurred. How likely is this
possibility? A short detour 1s required to find out, If there is
Substantial intergalactic "missing" matter in the Universe, that mat-
ter is presumably hydrogen gas. If so, 1t must be ionized to escape
the very stringent observational upper limit on the density of neutrsl
hydrogen (Gunn and Peterson, 1965). A4s Zel'dovich and Sunyaev (1969)
have ghown, the matter could not have remained lonized ever since the
epoch corresponding to a redshift of 1000, Any intergslactic HITI must
have been ionized at a subsequent epoch. The required input of energy
would presumably have been supplied by bright stars in primordial gal-
axies, by supernovae, by shock waves in collapsing "pancakes", or by
the formation of protostars. If $yry e Sor the energy requirements
are substantial. Putting this difficulty aside, let us suppose that
there exists in the Universe intergalactic ionized hydrogen of density
equal to the critical density. Then the optical depth due to Thomson
scattering reaches unity at a redshift of about 13 (Gunn and Peterson,
1965; modified to Hj = 50 km/sec per Mpc), and this would then become
the surface of last scattering. If the density of lonized matter were
substantially lower, as seems to be favored by the arguments of Gott
et al (1974), then one could tgee” gomewhat further, to z =~ 16. Now
if this redshift ig larger than the redshift at which primordial gal-
axies or stars form and release their energy, the Universe will remain
transparent to z =2 1000 even if all the intergalactic material is
ionized. In effect, the Universe hecomes opaque again only if matter
is reionized at a sufficiently early epochs. But recall that very
early formation of hound systems presents a problem because of Lifshitz’
argument. PFinally, to complete this'detour, let me remark that even
if the surface of last scattering is at a lower value of the redshift
than 1000, we may still be able to observe fluctuations in the micro-
wave background, since 1t is reasonable to expect that the matter at
the time of star or galaxy formation would be inhomogeneously distrie
tuted. In general, I will assume that there has been no reionization,
so that the surface of lagt scattering is at z =< 1000.
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4. Sketch of the Theory of Density Perturbations

With this outline in mind, let us now consider the theory oxr the
origin, nature and growth of density perturbations more carefully.

Pirst, it may be helpful to distinguish the various sorits of
perturbations that we would expect in a hot expanding Universes. The
first type is agdiabatic perturbations in which both ¢ and T are per—
turbed, so that the entropy, &s measured by the ratio of photon number,
is the same inside and outside the perturbed regions. TFor such per-
turbations AT/T = 1/3 A¢/¢ . These are discussed more fully by
Zel dovich here.

Another possibility is isothermal or eniropy perfurbations where
the matter density is perturbed but the temperature is not.

4 third class of perturbation is turbulent pexrturbations or vor-
tices or "whirls" (Ozernoi and Chernin, 1967; Ozernoi and Chibisov,
1971; Ozernoi, 1974; also Anile et al, 1976). These are large-scale
turbulent eddies in the coupled matter and radiation. After recombi-
nation and decoupling, the fossil eddies in the matter density under-
go gravitational contraction as outlined above.

How would such perturbations arise in a hot Big Bang model? In
my view, we are very far from any proper answer to this question. The
problem is particularly acute in the case of adiabatic perturbations
which are heavily damped before recombination. Thus initially large
perturbations are required if ZX?/? is %o reach recombination with
the necessary amplitude. In our present state of ignorance, we may
simply have to assert that the perturbations were there from the be-
gimming, as initial conditions; to say metaphorically that it was God
who separated the light from the dark.

The fate of density perturbations in the era before recouwbina-
tion depends both on their type and on their mass. The upper end of
the mass spectrum we will have to consider is the mass contained with-
in the light horizon of the expanding Universe at the epoch of recom-
bination. ILarger volumes were not causally connected. This upper
limit is ¥ ~10'9 M.

First, let us consider adiabatic perturbatioms. A crucial vari-
able 15 the Jeans mass (Jeans, 1928; see also Rees, 1971). Perturba-
tions with masses grater than the Jeans mass can contract gravita-
tionally, while smaller masses oscillate in amplitude. The Jeans mass
itself varies throughout the epoch before and during recombination
(Rees, 1971). Note that any density perturbation with mass < 10'° Mg
will have undergone a period of oscillation. 4 more precise value for
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the maximum Jeans mass (Jones, 1976) is

RE (Qn2y=1/2 ,

~l.4 X 1
1 + 30 (Qh?)3/2

(MJ}max
Since the astrophysical systems of most direct interest - galaxies
and clusters - have masses below this value, we need to ask what hap-
pens to perturbations which undergo oscillations after their mass has
fallen below the Jeans mass. This question has been examined in con-
siderable detail. Among others, Silk (1968, 1974) has shown that
small scale adiabatic perturbations are heavily damped by photon d4if-

fusion and viscosity. Adiabatic perturbations with
N o€ 2 x10'2 (@n2)~5/4 M,

are damped out. The fact that the upper limit for radiative damping

correspond roughly with galactic masses is intriguing (though one can
argue as do Rees and Ostriker, 1977, that galaxies have the wmass they
do for different reasons).

Since in isothermel (entropy) perturbations the temperature is
not perturbed, radistion damping of the kind described by Silk is not
present. However radiation drag does prevent any growth in amplitude
of isothermal perturbations whose mass is less than the Jeans mass,
These will emerge at recombination with the same amplitude they had
at the time the value of the Jeans mass equaled their mass. This is
in sharp contrast with the case fox adiabatic perturbations. It is
worth noting that the Jeans mass is approximately equal to a galactic
mass only a few years after the Big Bang. If one could detect fluctu-
ations on the surface of last scattering, and if one could show that
these are isothermal fluctuations (by considering the mass scale for
instance), one would then have a sample of the density perturbation
spectrum from a very early epoche.

The fate of turbulent (vortex) perturbations at and before de-
coupling is more compleXe Briefly, turbulence on a particular mass
scale may be damped, or even increased in amplitude as larger mass
vortices decay. In addition, vortices may be heavily damped during
recombination, when the vortex motions become hypersonic. These pro-
cesses have been discussed in a series of papers by Ozernoi and his
colleagues {eege, Ozernoi, 1974), and reviewed by Jones (1976). While
the exsct results change from one paper to another, depending on the
input physics, it appears that perturbations with masses M g 3 %

1012 (§2h2)'7 2 are heavily damped. Assuming that the sgpectrum per-

turbations was initially Kolmogorov, one would then expect the maxi-
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mum perturbation amplitude at approximately this value of mass.

Thus far, we have discussed perturbations in terms of the den~-
sity contrast, A¢/¢ . The quantity of observational interest is
the temperature contrast, AT/T. As explained earlier by Zel dovich,
the relation between the two is simple only for massive adiabatlc per-
turbations, where AT/T = 1/3 A¢/¢ . Por masses £ 10 15 M, the
observable AT is decreased because the individual perturbatlons are
not optically thick at and just before recombinstion {Sunyaev and
Zel'dovich, 1970). Thus any line of sight penetrates several pertur-
bations and the tewperature contrast is reduced. For these smallex
perturbations as well gs those with M 2> 1015 My, fluctuations are
produced primarily by Doppler shifts caused by mass motions within
the perturbstions:

AT/T = X—Z%EL cosee’T(Z)dT'(z)

where © is the angle between V and the line of sight, and T(z) is
the optical depth for Thomson scattering (see Sunyaev, 1977a). For'
magses >~1O -10 13 Mg, the expected values of the temperature fluc-
tuation AT/T are ~ 10™% (Doroshekevich et al, 1977a). To be more
precise, for a value of A¢/§ at z = 1000 of 10-2, we expect a
meximum value of AT/T of ~ 2 % 10™% on an angular scale of ~5°.

One expects temperature fluctuations of approximately the same
magnitude to be produced by the same effect by isothermal perturba-
tions (Zentsova and Chernin, 1977). The only difference to note is
that perturbations on mass scales below 10 12 1013 M@ may be present,
since radiation damping does not affect small isothermal pexrturbations
as it does small adiabatic perturbations. Hence if perturbations are
detected with masses of ~ 10'2 Mg or below, it would suggest they are
isothermal in nature.

5. Observational Parameters

Tet us now assess and summarize these resulis from an observa-
tional point of view, as Sunyazev (1978) did in his recent reviews in
Pallinne Severeal mass scales may be of particular interest. I have
also added approximate values for the corresponding angular scale,
making the assumption that the surface of last scattering is at z =
1000. Of course these values of © will also depend on the cosmological
model assumed. In those cases where estimates of z&m/m have been
made, they are also given.

M = 10'% My; & > 2°. Such large perturbations were not inside
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the 1ight horizon before recombination; that is, these reglons were
net caugally commected until after the epoch of z ~ 1000. Hence any
perturbation observed on such a large angular scale must have been
Present ab initio.

1094 >u > 10'% My; 2° 3@ 2 6°. It appears that there
are no strong concentrations of mass in this range (see the work of
Peebles and his group, discussed in this volume by Dautcourt). It
therefore seems reasonable that AS$/§ for such masses was not greater
than 10'3 at recombination. On the other hand, it is also reasonable
to expect some fluctuation on this scale if fluctuations on smallex
scales were present - presumably the perturbation spectrum did not
have a sharp cutoff at 1015 M@. Indeed, the simplest assumption one
can make about the initial mass spectrum of the density perturbations
is & power law, Ag/g o M‘2 3, in which case Ay/g ~3 A’I‘/TN10'5-10"4
might be expected (see, for instance, Sunyaev, 1978)« Even substantial~
ly larger values of £:§/§‘ would be consigtent with the observed

clustering of matter on large scales, as discussed by Peebles and his
colleagues,

1012 Mg S M }1012 MQLG’ 2 & »1/2°., This mass range in-
cludes the mass of clusters of galaxies. The Universe today is guite
clearly inhomogeneous on the mass scales in this range. Therefore, as
Boynton {1978) has emphasized, density perturbations must have been
present in the past (figure 1) For any given value of = §,/%.,
We can even estimate the amplitude of the perturbations required at
recombination (z = 1000). Thus this range of masses (or of angular
scale) offers the best chance of forcing a confrontation between the-

ory and observation.
Detailed predictions of the amplitude of temperature fluctua-

tions are provided by Sunyaev {1978). These calculations suggest max-
imum values of AT/T ~ 2~6 %102 at 5°=10". Silk and Wilson (1979)
have recently used the properties of rich clusters and the work of
Seldner and Peebles (1977) to predict AT/T ~1.5 x 10~2 for proto~
—cluster fluctuations. This value does not appear to take into ac=-
count the reduction in AT which we expect because the fluctuations
have optical depth < 1. Reallsptically, Silk and Wilson's work sug-
gests AT/T ~ 1-2 X 10'4, on angular scales of 1/2°-207,

M < 10'% My; & < 30", If fluctuations on these small angular
scales are found, they must presumably be either turbulent or iso-
thermal in nature. Towards the upper end of this range is the mass
of a typical galaxy T Mg. We again expect AT/T < 1074,
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Pige 1. Small engular scale fluctuations calculated from the work of
Sunyaev and Zel dovich (1970), for various values of (2 . The hori-
zontal bars represent published or reported upper limits on AT/T on
various angular scales. See Table 1 for corrected values, and forx
identifications. (From Boynton, 1978.)

The final quantity of intexest to observers may be roughly called
the geometry or morphology of the fluctuations. Let me make this point
by asking a series of questions -~ to most of which answers are lacking.
Can we expect the temperature fluctuations to have approximately radial
symmetry? The work of Zel dovich and his group suggests rather a cha-
otic structure, without neat, isolated, temperature fluctuations. In
the case of vortex fluctuations, I would expect regions of positive
AT to be immediately adjacent to regions of negative AT. Next, are
perturbations of a particular angular scale randomly distributed on
the sky, or ought we to expect higher order clustering? Answers to
these questions ~ and indeed any detailed predictions of the geometry
and amplitude of fluctuations - would be of considerable assistance to
observers.

6. Other Possible Sources of Temperature Fluctuations

Thus far, I have restricted my discussion of temperature fluctu-
ations to those produced by perturbations present at z ~ 1000. There
are many other sources of temperature fluctuations in the cmb which I
should mention, even if I cannot treat them in detail. In some cases,
these additional mechanisms might produce values of AT larger than
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the cosmological fluctuations. More detailed calculations of these
effects would therefore be useful. There are, it seems to me, some
interesting problems in this area, waiting forx solution.

Pirst, as Dautcourt (1969) has pointed out, long wavelength grav-
ity waves can produce AT fluctuations. See also Doroshkevich at al
(1977b) .

Next are fluctuations which might be described as cosmogonic -
fluctuations arising from the formation of gravitationally bound sys-
tems at z <« 1000. A burst of star or galaxy formation which reionizes
the intergalactic medium (see above) would produce temperature fluctu-
ations if the neating were irregular (Sunyaev, 1977b). Shock waves in
"pancakes" might produce AT fluctuations with the filimentaxry™ or
honeycomb structure shown in Zel’dovich (1978). This filimentary
structure, if detected, would permit us to distinguish cosmogonic fluec-
tuations from primordial ones. There is also the possibility, raised
by Pabvian and Rees (1979) of scattering at even lower redshifts (z~1)
in gaseous protoclusters. The primary mechanism suggested is inverse
Compton scattering (see Sunyaev and Zel dovich, 1972), which would
produce "cool spots" in the cmb with AT ~ 1072 ¥ on angular scales
of ~17,

Pinally, I should mention the obvious point that the presence
of weak, unresolved, but nearby radio sources will also produce fluc-
tuations in the ohserved intensity of different regions of the sky,
quite unconnected with cosmological processes. This problem is dis-
cussed further below.

7« Basic Radio Astronomy

In the preceding pages, I've tried to show how observations of
small-scale anisotropies could lead to the solution of important cos-
mological problems. We have seen that sensitivities of AT/T < 1073
will be required if the observations awre to be of use. Even greater
sensitivity would be desirable. Can we do it?

Over a limited range of angular scales and wavelengths, the an-
swer is yes. Indeed, there have already been published several inves-
tigations reaching well below the limit AT/T = 1073. With one im-
portant exception, this research has employed conventional radio as-

%*Since we are talking about second generation processes, one could
also say "filamentary'" - a comment no one who was not at Jodowy
Dwér will understand.
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stronomical technigues, so it is appropriate to begin our considera-
tion of the observations by reviewing some basics of radio astronomy.
To start at the very beginning, a radio telescope consists of a

single receiver mounted at the focus of some sort of antenna, as shown
in figure 2.

TO SOURCE

MAIN BEAM
SOLID ANGLE

HALF-POWER BEAM WIDTH

SIDE LOBES

ﬁ—‘—"

Fige 2. The response of the telescope as a function of angle measured
from the axis of symmetry is shown. The half-power beam width of the
main beam solid angle ig indicated.

Because of diffraction, these telescopes are sensitive not just to
electromagnetic radiation incident exacily on axis, but also to radla-
tion coming from s small solid angle around the axis. While most of
the response of the telescope is concentrated in a small solild angle
around the central axis (called the "main beam solid angle"), higher
order diffraction maxima (referred to as "side lobes") can diffract
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radiation from the ground into the receiver. We will see that side-
~lobe radiation can present some problems when making measurements at
the high sensitivities which we require. One way to reduce the praob-
lem of side~lobe radiation, and also to reduce errors caused by random
changes in the sensitivity of the receiver, is t0 make a differential
measurement. One switches the receiver, electrically or mechanically,
between two closely adjacent regions of the sky, one of which contains
the source of interest, the other of which is nominally empty or "blankl
Since one is in effect looking alternately at two separate small solid
angles in the sky, this technigue is referred to as beam switching.
Pinally, while one camnot eliminate side~lobe radiation from the ground
entirely, one can at least limit changes in its intensity by making ob-
servations with the telescope fixed, so that the diffraction pattern
does not change in time. Scans made of the sky as the celestial sphere
rotates past a fixed telescope are referred to as drift scans. Many

of the observations I will discuss later employ both beam switching

and drift scan techniques.

Now let us congider the sensitivity of radio astronomical meag-
urements. Ignoring for the moment externmal sources of noise, the lim-
iting sensitivity of a radio telescope is fixed by the Johnson noise
generated in the receiver (in the mixer of a superheterodyne receiver
or in the various stages of amplification). This noise is tradition-
ally described in terms of a temperature, the receiver nolse tempers-
ture, such that kTp = W, where W is the noise power per unit bandwidth.
The actual noise temperature of a real radlo telescope observing the
sky through the Barth’s atmosphere will be somewhat larger, for a va~
riety of reasons which I will skip over. The actual system noise tem~
perature T will exceed T, by tens or hundreds of degrees depending
on the system and the wavelength.

Given a system with noise temperature T,y what is AT, the
minimum Tr.me.s. temperature fluctuation in the sky which can be de-

tected? It is

N

8
ATm - ea eb 85 ‘VA\)F

(1)

where AV is the postdetection bandwidth of the receiver (generally
fixed by the first stage of the amplifier), and t is the total inte~
grating time. In this equation, I have used Ea to represent the
aperture efficiency (including the reflectivity of the surface of the
antenna), and Eb as the beam efficiency, which we may define as the
following ratio, using S to represent the flux density or signal re-
corded:
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e, = S ( point source on axis)
o~ 5 (similar source filling %tofal solid angle)

Diffraction losses and any structural irregularities in an antenns

will cause & b to be less than unity. Togethﬁx'(gElgb) megsures the

efficiency of response to a source small in comparison to the main sol=

id angle. Typical values for (ga gb) are approximately 0.5. Finally,
& is a parameter which takes into account the mode of beam switch-

ing employed. If ordinary beam switching is employed, with square

wave modulation, 8S= 1/2.%

Corresponding to ASTm is the minipum detectable flux density
{units of 10726 watts/m2 Hz), AS;, given by

AS =2k ATy
m A

for L;Tm as defined above, where A is the geometrical area of the
telescope.

To be concrete, let me work out a specific example. The 11-me-
ter millimeter wave telescope at the National Radio Astronomy Observa-
tory in Tucson has a receiver with T, ~ 520 K and AV = 109 Hz. The
system temperature is somewhat higher than Tr’ typically Ts = 570 K.
For this antenna at X = 9 mm, (eagb) = 0.4, and for beam switching
8y = 0.5, Foroa 10 second integration, we find AT~ «03 K for a
single point on the skye. To reach AT = 1072 K =1 oK would require
~ 3 hours of observation. To search for fluctuations, of course, one
needs to observe a statistically significant number of independent
points. Pairly obviously, one is talking about days of work at a sen-
gsitive radio telescope. The hope for the future lies either in low-
ering Ts’ or, more likely, markedly increasing AV . Nevertheless,
with patience, instruments available today should be able to reach
AT/T £ 10'4, provided that other sources of random and systematic
error can be kept lows Let us now turn to the question of exrrors, and
the limits they set on our searches for fluctuations in the cmb.

Por all of the searches for small scale anisotropy in the cmb
which have thus far been published, the limiting factor appears to
have been the system noise discussed above. This will probably con-
tinue to be true at short wavelengths. Receiver noise increases sharp-
ly as frequency rises; at present the technology of high frequency
receivers, and the deferioration of éia at high frequencies, fixes a
practical lower limit on the wavelength at which ordinary radio ob-

#*Por further details, consult a text on radio sstronomy, such as Kraus
(1966) or Shklovekii (1960).
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Servations can usefully be performed: X\ > 3 mm,

In addition, high frequency measurements are more susceptible
t0 noise introduced by reemision from the earth’s atmosphere than
those at wavelengths greater than 1.5 = 2 cme The worst culprit is
water vapor because it is not uniformly distributed. A handsome cumu~
lus cloud can produce a fluctuation more than four orders of magnitude
greater than the AT we seek to measure. Beam switching can help %o
reduce this source of noise, but unless one makes observations in good
weather, atmospheric noise can completely dominate system noise.

Hence the words of Parijski; in his 1973b article: "...we have used
only recordings obtained in clear, settled, frosty weather". The pre-
sence of strong water vapor lines in the earth’s atmosphere also makes
it impossible to observe at wavelengths < 1.5 cm except in narrow
wavelength "windows". The "windows" available are those at A = 9nm
and A=3 mm.

While system and atmospheric noise together fix lower limits on
the useful range of % , the upper limit is determined by a quite dif-
ferent consideration: emission from local sources, either our own Gal~
axy or extragalactic radio sources. On small angular scales, emission
from our own Galaxy will probably not present insuperable problems.

It is, however, the predominant source of systematic errors in meas-
urements of the large-scale anisotropy of the cmb, and we shall return
to this issue later. Moxe pertinent to our present discussion is the
contribvution of extragalactic radio sources, such as radio galaxies

and quasars. Even if we choose to observe in a reglon where there are
no catalogued radio sources, very faint radlo sources randomly distri-
buted on the sky may mask or mimic the fluctuations in the cmb we seek.
The vast majority of such radio sources have power law spectra

I(v) < v™™ , with o« > 0 (typically 0.7), whereas I(y) of the cmb
ig x~w2 in the Rayleigh~Jeans region. Therefore the contribution of
such local sources rapidly becomes dominant as the freguency of obsere
vation is lowered, or A is raised (Tongair and Sunyaev, 1969). This
congideration will almost certainly limit observations of fluctuations
in the cosmic microwave background to wavelengths < 10 cme 4As receiv-
ers are improved, permitting more sensitive measurements, this source
of error way come to be the dominant one. If so, we will be forced

to move to shorter and shorter wavelengths for the reason set out above.
Unfortunately, the properties of radio sources, such as their number
per steradian and their speciral index o, are not as well known at
higher frequencies. Longair and Sunyaev (1969) made this point clear-
ly. Better surveys at centimeter wavelengths are now becoming availa-
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ble (see Jauncey, 1977, and references therein) which may help us to

deal better with the problem of noise introduced by "local" sourcese.
For the reasons set out above, published searches for fluctua-

tions in the cmb have been carried out in the wavelength range

3.5 mm < N £ 4 cme Most have been drift scans. One observational

program which did not employ this technique (Boynton and Partridge,

© 1973) encountered severe problems because of side lobe radiation.

8« Required Coxrrections

The data from a typical search for temperature fluctuations might
consist of 10-50 measurements of the intensity of the cmb at different
points on the sky. A representative plot is shown in figure 3.

o (1950)
3hgom 3hpsm 3hiom
T |

ALL DATA (WEIGHTED)

20

AT, 103K

| | | l l | 1 I |
1 5 10 15 20 25 30 35 40
COLUMN NUMBER, m

Pige 3 Results of a drift scan made at A = 9 mm, with an antenna
beam of ~ 3.6 arcminutes width. The length of the scan was ~ 40 arc-
minutes. MTypical error bars are shown. These data are preliminary
results; the final results will appear in Partridge (1979).

We need next to examine what such a plot can tell us about the ampli-
tude and average scale of possible anigotropies in the microwave back~
ground. Two major steps have to be taken. First, the raw numbers
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tust be corrected for instrumental inefficienecy and absorption by the
earth’s atmosphere, and then converted to true thermodynamic tempera-
tures® The first of these corrections is a matter of judgment. The
efficiency of a radio telescope, for instance, depends on whether one
is seeking temperature fluctuations small compared to the malin beam
solid angle or fluctuations which essentially f£ill it. In the latter
case, the quantity &, in equation 1 will be larger. This question

is discussed further elsewhere (Partridge, 1979). PFinally, if the ob-
servations are made in the form of drift scans, account must be taken
of the fact that a source moves relative to the telescope, and there-
fore moves through the main beam solid angle. This in turn results

in a8 "emearing" and slight logs in sensitivity. Again, this matter

is further discussed elsewhere (Partridge, 1979). I have mentioned
each of these corrections separately because not all of them have been
made to the data which appear in the various published searches for

fluctuations in the cmb.

9. Statistical Analysis

Once the data have been corrected one can try to determine wheth-
er statistically significant fluctuations in the sky temperature have
been seen. A first approximation is gimply to look at the data -~
clearly the fluctuations in AT shown in figure 3 1lie at or below
1.2 X 10-3 XK = 1,2 mK. A slightly more quantitative assessment is to
compute the standard deviation of the data points.

These rough methods ignore the contribution of receiver noise
to the scatter of the data points. Indeed, looking at figure 3 tells
us nothing about fluctuations on the sky except that their rms value
mist be lese than or equal to 1.2 mK. Conceivably all the variation
could be due purely to instrumental noise. Conklin and Bracewell
(1967) were the first to point out that there exist ways to subtract
out system noise, at least on a statistical basis. This technique has
been refined and employed by Parijskij in the analysis of his data

¥Up to this point in this article, I have followed the usual radio as-
tronomical convention of employlng antenna temperature, defined by

T (antenna) =—%‘%— ,

where S is flux density (see Xraus, 1966, for instance). ZExcept in
the Rayleigh-Jeans region of the cmb spectrum, values of AT/T meas-
ured in entenna temperature are different for values of AT/T ex~
pressed in true, thermodynamic, temperature (see Boughn, Fram and
Partridge, 19715. The required correction is small for all of the
measurements discussed below.
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(Parijskij, 1973b, 1977). Essentially, one makes use of the fact that
the receiver noilse contribution to scatter in the data decreases as
more and more observations of each point on the sky are accumulated.
Ideally, if Sy is the rms noise observed in a single obsexrvation for

a single point, the rms receiver noise for n observations should de-
crease as G, = sr/W?P (from eqn. 1)+ The observations will contain
scatter from both receiver noise and possibly real fluctustions in the
skys

2
6a(m) = 62+ G2 = 65+ 2 (2)

The intercept of a plot of 6% versus 1/n gives Gi.

This method assumes that receiver noise will decrease as t-1/2
While this may not in fact be so, it will certainly not decrease fasgt-
er. Therefore, the method offers a reliable upper limit on 5

What is the precision with which €§ can be found by this meth-
0d? It has been claimed that the exrror can be determined from the
scatter in the plot of Gi(n) VSe %. However, it seems to me that the
individual points in the plot are not independent (all the data are
used to determine each), and therefore any estimate of the error in
the intercept must take this dependence into account. Failure to do
so will underestimate the true error in the estimate of G s°

An alternative method, employing the same basic principle of re~
moving receiver noise, was developed by John Deeter and is described
in Boynton and Partridge (1973). Suppose one has a series of n drift
scans, each covering m independent points on the sky. Arrange the
data in a n by m matrix. Recall that the data represent small differ-
ences in intensity between two nearby regions Iin the sky if beanm
switching is employed. Therefore each element in the matrix can be
written as

X=1I +1I,+ Ig - (Is + I, + IG) + N (3)

I is the intensity of the cmb at one position of the beam, I, is the
intensity contributed by the earth’s atmosphere, and I is ground ra-
diatlion into the side lobes. The primed quantities refer to the other
position of the beam. N represents the contribution of randomly vari~
able receiver noise. If drift scans are employed, so that the tele~
scope is fixed, IG = Ié to high accuracy, and any swmall random fluctu-
ations in the difference (I; - Ié) can be lumped in with N. The same
applies to the atmospheric contribution IA - IA, providing the beanm
switch is rapid. In this approximation

X:IS—IS+N



149

and we note that the true sky variance is given by
GZS = % var(I - Ié) = %(var X - var N) (4)

Since the noise represented by N is due mainly to the receiver, we can
return to our earlier nomenclature and write var(N) in (4) as G
Hence if we average the data over rows of the n by wm matrix, that is
if we average over the scans, we will obtain a column~to-column vari-
ance which contains both the sky variance and a variance component due
mainly to receiver noise. A similar analysis, sampling row-to-row
differences, would yield the variance in N, or G%, exclusive of any
sky varistion. A comparison of "column variance! 65, + 2 st t0 "row
variance", Gi, can then be used to determine |G’ , or to set upper
limits on the sky fluctuatione (Boynton and Partridge, 1973).

It remains only to determine the confidence level of the upper
limit (oxr the error in the estimate of GS). For the case 62 < G
that is, where receiver noise dominates any real sky fluc*tuations, we
can use the test deseribed in Boynton and Partridge (1973). We wish
to test the hypothesis that 62 0 against the hypothesis that 6
is equal to some pon-zero value 62 We begin by constructing the

statistic 2
Xn
4 - Z G262 + 62) ()
Note that G’ are the row variances, and the (G + @'2) are the col-
umn variances if 6% = 2 Gz Hence the terms

X2
G2 + §°

(Gp + 67)
in (5) are independent unit-normal variables when (§2 =2 Gi, 8o that
the statistic gould be a 7(2 variable except for the additional

Gg factor in the denominator, which may be thought of as a weighte.
However, if we define

= -2 -242
R= > 622/ D(632)
m m
then the product R 4 is approximately distributfed as x2 on Vv de~-
grees of freedom, where

1
Vo= R
>m: G2
The ')(2 test permits us to estimate a confidence level, that is to
conclude that the hypothesis that the sky fluctuations are greater

than some value can be excluded at a given confidence level. This
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znalysis has been applied to the data of Boynton and Partridge (1973)
and Partridge (1979), to which those interested in the finer details
are referred.

This method does not have the drawbacks inherent in the method
discussed earlier. However, it is most accurate for testing null ox
very small sky variances. If the observations improve to the point
that Gi &« Gi, new statistical methods may be required. Fortunate-
1y (or more truly, unfortunately) we do not yet have measurements so
good that we need to be concermed about this problem.

10 A Review and Analysis of Existing Measurements

Having explained the techniques of observation and dets analysis
{including some of the pitfalls), I will now try to review the exist-
ing measurements. Table 1 contains what I believe to be a complete
summary of the observational results. Some of the earlier work (by
Conklin and Bracewell, 1967; Penzias, Schraml and Wilson, 1969; and
Boynton snd Partridge, 1973) has clearly been superseded, but of course
represented wuch hard work with the receivers available five to ten
years ago. The relevant measures are those of Carpenter at al (1973),
Stankevich (1974), Parijskij and his colleagues (1973a, 1973b, 1977),
and Caderni et al (1977), all of which have been published, and the
unpublished works by J.C. Pigg and by me. Let me review each briefly.

In some cases, I have applied corrections which I believe to be
necessary to the published results (see final column of Table 1)+ The
retrospective application of correctlons t0 other people s data is a
risky business. Let me apologize in advance to my colleagues whose
work T am sbout t0 review — especially if I appear to have misread
their work.

Carpenter et al (1973) worked at X = 3.6 cm, employing the 64
meter anterma at Goldstone, California. This combination of recelver
and sntenna gave them a beam of halfwidth ~ 2°+ 'They have taken into
account all of the relevant corrections described above.

For his measurement, Stankevich employed the 64-meter telescope
in Parkes, Australia. Because of the long wavelength he used, ) =
= 11 cm, a substantial correction was required for the fluctuations
produced by weak discrete sources in his beam. Indeed, a&s he points
out, a reasonable extrapolation from a survey at 408 MHz suggests that
all the fluctuation he sees "...could be attribdutable to unresolved
discrete sources". In fact, interferometric observations at 11 cm,
by Mertin, Partridge and Rood, to be discussed below, and the work of



Reported or

<1.3 X 1077

Observers Wavelength fnguler PuLighed Mty e

1. Conklin and Bracewell (1967) 2.8 10° 1.8 x 1077
2. Penzias et al (1969) 0.35 27 <9 x 1072 <2 x 1078
3, Boynton and Partridge (1973) 0.35 N 1457 {3.7 x 1072 <2 %1072
4. Carpenter et al (1973) 3.6 2°.1° <7 x 1074
5a.Parijskij (1973a) 2.8 37210 <3 x 1072 <4 x 1074
5b.Parijskij (1973b) 4.0 ~ 127 x 40° 5 % 1077 <146 x 1074
6. Stankevich (1974) 1.1 8°-20 1.5 x 1074 <3 x 1074
7. Caderni et al (1977) 0.1% 30 <142 % 1074 (?)
8. Partridge (1978) 0.9 n o3 1.5 x 1074
9. Pigg (1978) 2.0 1437 nd x 1074(2)
10. Parijskij (1977) 4.0 5°-150" <8 X 1072 to

see text

*pssuming T = 2.7°K; upper limits are generally quoted as 26 oxr at the 957 confidence level.

Table 1. A list of all published and unpublished measurements of the small~scale anisotropy of the
cmbe In some cases such as (3) and (5), the authors have revised their published values. In other

cases, I have atteupted to apply some of the corrections described in this article.

cussed more fully in the text.

These are dis-

18}
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Wall and Cooke (1975), suggest that his pessimistic view wmay in fact
be justified.

Stankevich s brief communication doeg not provide enough detail
to reveal whether the corrections described above have been applied
to his data. It is clear from the parameters cited in his article,
however, that he did not take in account the efficiency of the Parkes
telescope - the factor ( € 5b). Including this factor alone degrades
the sensitivity of his limit on sky temperature fluctuations by a fac-
tor of 2.

In 1973, Parijskij reported two upper limits on AOT/T. Por the
first (1973a) he used a 2.8 cm receiver, also on the 64~meter dish at
Goldstone, Cslifornia. His original published upper limit of £ 3 x1CT5
has been revised by him to £ 4 x10”% (see Boynton, 1978). The sec-
ond {1973b) measurement was at % = 4 cm, using the Pulkovo radio tel-
escope, which has & main beam solid angle of ~12° % 40°. As was the
case for Stankevich’s result, his published upper limit needs to be
corrected for telescope efficiency (I estimate £, 51}4},5), I have
also converted his value to a 26 or ~95% confidence limit. These
two corrections produce AT/T £ 1.6 x 10~%, which appears in the
final column of Table 1. Finally, there is the question of the esti-
mate of the exror in Gi derived from the procedure of Conklin and
Bracewell (1967) - see discussion gbove. In this particular paper,
the error in the estimate of 65 is given ag 4 X 10'5 Kf' However,
from the data provided by the author, it is clear that the actual aob-
served scatter, when all 12 recordings had been averaged together, was
A fe5 X 10~4 K*; more than sn order of magnitude greater. I would
have expected the erxor in the estimate of Gs to be roughly compara-
ble to the scatter 60(12)'z 4~5 % 1074 ¥X; hence I suspect Parijski]
has underestimated the error in Gi. This expectation is based on ex-
perience with my own data (Partridge, 1979), which I suppose to be re-
ceiver noise dominated like his. A precise resolution of the doubt
I have raised would require access to Parijskij’s data in more detail
than appears in his article (1973b). Since this point is based on
hunch rather than calculation, I have not taken it into account in the
entry in the final column of Table 1.

Parijskij s 1977 paper with Petrov and Cherkov reports the re-
sults of & more refined search employing the RATAN-600 telescope at

"z 4 cm. Angular scales from 5  to 150" were searched; the pub-
lished 26 wupper limits on AT/T range from 8 X 1072 to 1.3 x 1072,

% tncorrected for the effects listed early in this paragraph.
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However, from a preliminary reading of the paper, it appears to me
that the telescope efficiency ( £, €, in my notation) has not fully
been taken into account. The stated figure for telescope efficiency,
87% , seems highe. Again, I emphasize that the doubt I raise may be
based on a misreading of their paper. In addition - perhaps because
I have not yet seen an English version of the paper - I do not fully
understand the data analysise Using n = 20 (the number of scans) in
their formula (1) seems to produce values of AT/T 2 3 times larger
than their published values.

The work of Caderni et al (1977) may represent the wave of the
future in this field. They employed a wide-band bolometric detector
as thelr receiver, and a small flux collecting antenna. Corrections
for telescope efficiency and absorption by the atmosphere appear to
have been included (since the instrument was calibrated using astron-
omical sources). It is not clear whether the correction for "smearing"
was included, nor is much detail provided on the analysis of the data.
I suspect any changes introduced by such considerations would not al-
ter their final results very muche. Note the relatively large angular
scale of the measurements, imposed by experimental consiraints dis-
cussed by the authors.

Pigg also worked with the 64-meter Goldstone antenna, at A =
= 2 cme His observations were made in a region of high galactic lati~
tude. Preliminary analysis suggests 21 mK as an upper limit on the
fluctuations in the cmb on a scale of 1.4, his half-power beamwidth.
I do not know how many points he observed, oxr which of the various
corrections discussed above were applied to his data. Note that the
angular scale for which these observations were made is the smallest
of any of the sensitive measurements contained in Table 1.

My own work will be discussed in considerably more detail else~
where (Partridge, 1979). Here, let me simply summarize the relevant
observational details. Measurements were made at N = 9 mm using the
11 meter telescope of the National Radio Astronomy Observatory in
Tucson. Drift scans were made of a small strip of the sky at declina-
tion = 80°, right ascension = Bh, and anothexr smallexr strip at the
same declination, but right agcension = 9h. The half~-power beamwidth
of this instrument was 3.6°. Once all of the corrections discussed
above had been made, the following preliminary conclusions could be
drawn: -~ At the 95% confidence level fluctuations in the sky tempera-
ture on angular scales substantially smaller than 3.6° were smallex
than 0.7 mK, that is, AT/T & 2.5 x 10°%. The experiment permitted
me to set somewhat more sensitive limits on fluctuations of approxi-
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mately the same angulaxr scale as the main beam solid angle, that is
G-NBZLL'. Here, the 95% confidence limit appears to be AT/T S 1.5%
X107

11, Interferometric Search for Fluctuations in the cmb

The angular scsle of 1.4° reached by Pigg is about the lower
1imit that can be achieved by using conventional, filled aperture, ra-
dio telescopes. Perhaps the best one could do is the 100 meter tele-
scope in Bonn, which, if used with a 1.25 cm receiver, would give a
half-power beamwidth of ~40", To search on smaller angular scales,
which may be of interest if we hope to see protogeslactic fluctuations,
one has to resort to new methods. One possibility is interferometry.
Using a spaced array of radio telescopes as an interferometer offers
far greater angular resolution, and the additional advantage that one
can obtain a two-dimensional map of the skyf In principle, then, in-
terferometry offers the ideal approach to a search for small scale
fluctuations in the cmb. Unfortunately, one pays an extremely heavy
price in sensitivity. In crude terms the difficulty is that conven-
tional interferometers look at too many individual points in the sky.
Thus the effective amount of integration time spent on each independ-
ent point on the sky is small. Nevexrtheless, observations of this
sort have been undertaken. The first experiment of this nature that
I know of was performed several years ago, for a different purpose,
by Goldstein, Marscher and Rood (1976)e Their measurements were made
at = 21 cm, where the contribution from faint radio sources no doubt
overwhelmed fluctuations in the cmbe. In addition, their experiment
was not particularly sensitive, setiting limits on AT of < 90 mK.

Martin, Rood and I have attempted to repeat and refine this ex-
periment. We worked with the same interferometer, the three element
array in Green Bank, West Virginia, but we used shorter wavelengths,
3.7 om and 11 cm. We observed a region centered at A= 80°08°, «=
= 5210% ysing baselines of 1900, 1800, 1200, 600, and 100 meters. Be-
cause of the high declination of the source, and the reasonably large
nuymber of baselines employed, the synthesized beam of the interfero-
meter was well defined or "clean'. The beam is shown in figure 4.

We obtained a total of eight nights of observation. The interferome-~
tric map of the region, with all data included, is shown in figure 5.
This map was then analyzed using a variant of the method employed by

%This would be a particular advantage if the fluctuations sought were
not highly symmetrical.
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Goldstein et al (1976).

Pige 4. The synthesized interferometer beam used by Martin, Partridge
and Rood to search for small angular scale fluctuations. The "rings"

in the interference pattern result from the small number of baselines
usged
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Fige 5o A map of the sky at N = 3.7 cm obtained using the Green Bank
intexrferometer
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This method allows us to make an approximate correction for the fluc~
tuations introduced by receiver noise. The analysis of ouxr data is
not yet complete, tut preliminary values for the upper limits on fluc-
tuations in the sky are:

at 11 om, |62 < 0.45 + 0,22 % 107> Jansky, and

at 3.7 cm, ‘[ Gi < 0018 + 0012 % 1073 Jansky.

The conversion from flux units to sky temperature presents more prob~
lems for an interferometric search than for a conventional radio searche
I prefer to skip over these detalls here, since they will be discussed
fully in the paper which Martin, Rood and I are preparing. At the mo-
ment, we are not entirely convinced that the conversion method used by
Goldstein et al is correct. But if we do employ this method to con-
vert the results of our own experiment we find the following prelimi-
nary results:

AT & 18 + 9 wK at 11 cm,
AT 4 ?iSmKat 3.7 cma

The price paid in sensitivity foxr the higher resolution afforded by
interferometry is quite clear. These upper limits to fluctuations in
the sky temperature apply to angular scales smaller than the synthe-
sized beam. In the case of the 11 cm observations, this scale is ~12%;
for the shorter wavelength measurements, it is ~ 4%,

Although this first attempt did not place interesting limits on
fluctuations in the cmb, some useful resulis did emerge. In effect,
the experiment represented an extension of the source surveys at 11 cm
and 4 cm to somewhat fainter flux densities. TFor instance, at 11 cm
the measured fluctuation level was 0.45 + 0.22 mdy. From the way we
congtructed our interferometer maps, we know that this was the mean
level of fluctuation detected in cells of solid angle 5° x 5"« If we
now accept the argument of Longair and Sunyaev (1969) that most of the
fluctuation due %to discrete sources arises from the presence of the
single brightest source in the solid angle under study, then our meas-
urements suggest the presence of one gource of ~ 04,45 mdy in each
5°X 5° area of the sky (equivalent to 2 x 1076 ster). This result
is in good agreement with an extrapolation of the survey of Wall and
Cooke (1975)e The work at A = 3.7 cm may be used to corroborate the
extrapolation made by Iongair and Sunyaev (1969); our measured values
are in good agreement with thelr predictions down to a level of 2~3 mdye.
We conclude that for any filled aperture telescope mow extant, fluctu-
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ations produced by unresolved radio sources will swamp fluctuations
in the cmb if observations are made at 11 cm; but will not at 4 cm.

12. The Large Scale Isotropy of the Universe

Two of the basic assumptions underlying the Priedman models of
cosmology are that the Universe is homogeneous, and that it is isotro~
pic. Included in the latter is the requirement of zero shear. As we
have seen, the Universe is manifestly not homogeneous. To date, how=-
ever, we have no evidence for the existence of systems of galactic
masses or larger for which GM/Rc® ~ 1. Hence on the large scale the
assumption of homogeneity is approximately valid.

As has been pointed out elsewhere in this volume, the cmb pro~
vides the strongest observational evidence supporting the validity of
the second assumption of Friedman cosmologles as well. The observed
isotropy of the cosmic microwave background sets stringent limits on
anisotropic cosmological expansion and shear.

Several sorts of large angular scale anisotropy may be present
in the cmbe. A dipole anisotropy may be produced by the Doppler effect
if the observer is in motion relative to the cmb. Our observations
of the cmb are not yet sensitive enough to detect the velocity of the
Earth. Measurements of the dipole anisotropy yleld only a value for
the solar velocity. Since the velocity of the sun in its orbit around
the center of the Galaxy is known to reasonable accuracy, one can cor-
rect the observed velocity to obtain the speed and direction of the
motion of the center of our Galaxy. This number is of interest in its
own right, and the value may also be used to set limits on cextain
classes of anisotropic cosmological models (Thorne, 1967; Hawking,
1969) .

Quadrupole anisotropy is produced by anisotropic expansion.

This topic is discussed more fully by MeCallum in this volume. One
frequently overlooked fact deserves further mention, however. Observ-
ers seem frequently to have forgotten that a simple guadrupole form
will be present only for certain classes of anisotropic cosmological
models. As Novikov and others (1968, 1977) have been at pains to point
out, the general situation is more complicated, especially in open

{ ?o < 90} models., In particular, for open anisotropic models, large
departures from the mean background temperature may occur only in a
rather limited solid angle, given approximately by Q = ( §,/ 90)2.

A survey covering a limited part of the sky cannot reliably be used

to rule out certain classeg of anisotroplic cosmological models.
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With the exception of this last point, all these matters are con-
gidered more carefully by other contributors to this volume. Therefore,
let me turn immediately to the present status of the observations. To
vegin with, let me emphasize that I have not been directly involved in
meagurements of this sort (except for an abortive attempt in 1976) for
the last ten years. Therefore, all the work I report in this section
will e other workers’, and I would urge you to consult their papers
for further details.

In Table 2 I have summarized the results of recent and reasona-
bly accurate measurements of the dipole anisotropy of the cmb. Some
earlier work has been omitted. The values ascribed to Corey and Wil-
kinson and to the Berkeley group {Smoot et al, 1977) are preliminary.
Both groups {(and an additional group at MIT) are pursuing these inves~
tigations. Nevartheiess, the data already in hand do agree moderately
well on a velocity of v, ~ 300 km/sec in the direction §~0°%, o=
= 12h. While the speed is about equal to the speed of the sun in its
circular path about the center of the Galaxy, the diresction is quite
different, Therefore, when vg is coxrrected for solar motion in the
Galaxy, we obtain a larger value for the speed of the Galaxy as a whole.
The velocity of the Galaxy appears to be Vo ~ 600 km/sec towards b =
=130°% (= 260°, in Galactic coordinates. It is worth noting that the
value of vq obtained from measurements of the cosmic microwave back~
ground is not in good agreement with the same guantity derived from
measurements of the redshifts of nearby spiral galaxies (Rubin et al,
1976)« To reconcile these two sets of observations, one has to assume
motion of the entire swarm of galaxies within ~ 100 Mpc relative to
the cmbe.

411 the measuresments of the large-scale isotropy of the cmb have
been made in the Northern hemisphere, so that a large fraction of the
Southern sky has not been surveyed. 48 a consequence, it is not easy
to separate out possible dipole and quadrupole moments¥ Nor, of course,
can we rule out the possibility of moxre complicated angular structure,
such as that suggested by Novikov. Observations in the Southern hemi-
sphere are being plamned. Until they have been completed, we can say
with reasonasble certainty only that the quadrupole component of the
anisotropy is less than or about 2 umkK, so that AT/T < 7 % 1074,

411 of the good measurements of large-scale anisotropy have been
carried out above all or most of the earth’s atmosphere. This fact

%*The determination of the declination component of the dipole anlso~-
tropy is also difficult.



DIPOLE

*
Obsexrvers H, cnm Ogi gﬁg%ingﬁégn AT, wK, 16 error x.of max (f?fdggzr.)
Partridge and Wilkinson (1967)| 3.2 §= - 8° 2.2 + 1.8 178
Henry (1971) 3,0 WeSe 3.2 + 0.8 1085 + 4% | - 30° 4 25°
Conklin (1972) 3.8 § =+ 32° 2.3 + 0.9 118
Corey and Wilkinson {1976) h b _ 540 o
(revised 1978) 145 WeSe 29 x Ce'7 123 * Ted 21 i 21
Smoot et al (1977) 0.9 Wese 3.2 + 0.5 1183 + %4 | + 142 + 7°
QUADRUPOLE
Partridge and Wilkinson (1967) 2.2 = - 8° 2e7 + 149 Th, 19h
Conklin (1972) 3.8 §= + 32° 1ed + 0.8 62, 188
Smoot et al (1977) 0.9 WeSe £1.0 2

*Early observations were scans made at a fixed § ; later observations scanned much of the visible

northern sky.

Table 2. Megsurements of the large~scale anisotropy of the cmb

651
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reveals the fundamental dilemma facing observers in this field. Ob-
servations at shoxrt wavelehgth are plagued by emission from the earth’s
atmosphere and the insensitivity of high frequency receivers discussed
earlier. On the other hand, observations at long wavelength run into
the serious systematic problem of anisotropic radio emission from our
own Galaxy. A decade of experience has shown that it is not possible
to make measurements of sufficlent accuracy from the surface of the
earth. Hence observers in this field have resorted to balloon and air-
craft flights to obtain their measurements, and these efforts are con~
tinuing. The ultimate experiment may be the Cosmic Background Exploxr-
er, a small satellite equipped with sensitive radiometers at several
different frequencies above 10 GHz. In space, where the Earth’s at-
mosphere is mo longer a problem, the short wavelength limit for accu-
rate observations will probably be set by thermal emission from dust
in our Galaxy. This material radiates dilute blackbody (or greybody)
radiation with a characteristic temperature of ~ 100 K. While, like
the radio emission which sets the uppexr wavelength limit for these ob-
servations, thermsl emission from dust is largery confined to the plane
of the Galaxy; there is some evidence that the concentration of dust
and hence its emission is inhomogeneous on angular scales of a few de-
grees (Weiss, private communication). If so, attempting to subtract
out the contribution of thermal dust emission will be made more dif-
ficulte.

These problems lie in the future. Even now, however, measure-
ments of the cmb have revealed the extremely impoxtant cosmological
result that our Galaxy is in relatively rapid motion with respect to
the cosmic background. Even if the value of v, changes slightly as
more accurate observations are obtained, the major result is the very
magnitude of Vge

1%. New Directions

Here and there in this article, I have mentioned matters that
need further study or possidle future observations. Since what I have
said has been directed at a group of young scientists interested in
cosmology, let me end by speculating briefly on what the next few years
will bring in this field.

Within the next few years, we should have more accurate observa-
tional results for the large-scale anisotropye. Possible sources of
systematic error in the large-scale measurements, such as radio and
thermal dust emission from our Galaxy, will be better understood. Meas-
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urements made in the Southerm hemisphere should help strengthen the
limit on guadrupole anisotropy. The one remaining observatlonal prize
would be the detection of the kind of isolated cosmological anisotropy
suggested by Grishchuk et al (1969) and Novikov (1977). Measurements
of the dipole and guadrupole moments, now or soon to be avallable,
should permit us to restrict the solid angle in which this complicated
cosmological anisotropy signal might be found. 4 careful search should
then be carried cut at high enough sngular reseolution to resolve the
complicated structure of this anisotropy (angular scale & = V§g/§b).
The detection of such a characteristic anisotropy would provide direct
evidence that the Universe is open (low density).

There is also a good deal of work to be done in searching for
anisotropies on smaller angular scales. Conventional radio astronomi-
cal megasurements could lower limits on AT/T on angular scales of a
few arcminutes by perhaps another factor of 3. The limits in this
range of angular scale are already the best we have. I would like to
see that effort pursued. I also think if would be useful to improve
our limits on AT/T on somewhat larger angular scales, those corre-
sponding to fluctuations which were not inside the light horizon at
the epoch of recombination. As Weinberg (1972) has pointed out, such
large mass aggregates were not causally connected, so We have no a
priori reason t0 expect them %o be homogeneous, at least in conven-
tional cosmological theory. My hunch is that no substantial anisotropy
on scales of 2°-3° will be found, but if it is wuch of our convention-
al thinking about cosmology might have to be revised. I plan to look
into this matter, in collaboration with colleagues at the Universities
of Troms8® and Bologna, this next year.

For all angular scales from a few arcminutes up to several de-
grees, conventional radio astronomical techniques may soon be super-
seded by bolometric measurements (see Boynton, 1978). Although in ra-
dio astronomical terms, the system noise of bolometers is far larger
then for conventional radio receivers, bolometers offer the advantage
of huge bandwidth, &V . One important bolometric measurement of
small-scale anisotropy has already been reported (Caderni et al, 1977),
and others are being planned. Bolometric measurements will necessarily
have to be made at high fregquency (to obtain the desired bandwidth),
end hence will encounter prodlems with the Earth s atmosphere. Hence
the searches may have to be carried out from aircraft or balloons, or
carried out only in moments of exceptional atmospheric stability. Only
new techniques of this sort, I would guess, will permit us to reach
sensitivities well below the limit of AT/T ~ 1074,
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Finally interferometric studies in this field are only just be-
ginning, The ability to map anisotropies, so as to reveal their char-
acteristic shape, would be a real advantage. 4 new generation of in-
terferometers such as the Very large Array in New Mexico, may eventu~-
ally permit us to reach fluctuation levels of ~1 mK.
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CONSTRAINTS ON THE POSSIBLE DISTORTIONS OF THE COSMIC
BACKGROUND RADIATION SPECTRUM

Ge De Zotti
Unitd di Ricerca di Asiago-Padova del C.N.R.

te Introduction

Professor Zeldovich (this volume) has devoted a few lectures to
the distortions of the cosmic background radiation {CBR) spectrum
which can be expected on theoretical grounds and has shown how much
it could be learned from them on how the universe has evolved. I will
present here the main results of an analysis of the presently availa-
ble observational data, carried out by Dr. Danese and myself, aimed fo
investigate whether any evidence of deviations from a blackbedy (BB)
shape can already be found and to estimate the allowed ranges for the
parameters defining the amplitude of the distortions (for a fuller ac-
count see Danese and De Zotti 1978).

2+ Expected distortions

The following short description of the dlstorted spectra is
based on the work by Zeldovich, Sunyaev and Illarionov (Zeldovich and
Sunyaev 1969, Sunyaev and Zeldovich 1970, Illarionov and Sunyaev 1974a,b;
for a more detailed review see Danese and De Zotti 1977).

An energy release occurring at a redshift 2y larger than

z, = 4x1o4_é“1/2, f).—: (HO/SO)QQ (Q.—: density parameter) (1)

leads to the formation of a Bose Einstein-like spectrum with & fre-
guency dependent chemical potential M which approaches a constant
value Mo in the spectral region where the free-free processes are
negligible, i.es at frequencies much larger than the dimensionless
frequency

%gp = B Vp/kT, = 1.2 x 107260 =7/8 [ 6.4 - 1n(106] /2 (2)

where Te is the electron temperature. At frequencies & "CB’ on the
other hand, the free~free processes dominate and M —~0, Fig, 1 illu-
strates the general behaviour of the equivalent thermodynamic temper—

ature Teq as a function of frequency. This distorted spectrum is
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characterized by a marked drop in Teq of amplitude

Fa N -
'T_T!max 24'5/‘*09 7/8 (/Lc)( XCB) (3)

occurring at a wavelength

Ay = 35078 cn )
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Fige 1e Tge 288 & function of frequency in the case of a BE~-1ike
distorte& gpectrum with @ = 0.3, Mo = 0.01 and T = 2. 9°K

The chemical potential um, is related to the fractional amount of en-
ergy released AE/E€ Dy

Mo & 1ed DE/E (M, & 1) (5)

where the < sign accountsg for the fact that distortions originated
at very early epochs (zy >zp ¢ 2 3.6%10 .Q -6/5 ) are smoothed out by
the combined action of free-free and Compton processese

If the energy release occurs at Zy < Zg there is not enough time
for the formation of a BE spectrum and the resulting distortion is,
to some extent, peculiar to the process of energy dissipation which
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was operating. However, on the limit AE/ € << 1, and if brems-
strahlung can be neglected, all spectra converge to the first oxdex
approximation

-Qc = [}XP(X) - {]-1 [1 * Zx;(zipﬁxz (tanﬁ%i/?) - 4)] (e)

Wwhere n . is the photon distribution function, x = hv/kTR, Tp 1s the
wnperturbed radiation temperature and u=x AE/4€, If the free-free
processes are taken into account the photon distribution function
writes:

Q= {1 - [1 - . (exp(xy) = 1)] exp(-yB)} [exp(xe) _ 1]_1 (1)

where . is the Compton distorted spectrum (eqe (6)), X, = xT/’I‘e and
yB(xe) is the free-free optical depth of the Universe. In the Ray-
leigh-Jeans (RJ) region, but above the frequency WV of free~free
self absorption, the spectrum shows a frequency independent diminu-
tion of Teq (Teq = TR(1 -~ 2u); see Figs 2).
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Fig. 2. Teq a5 a function of frequency in the case of "late' energy
release (Zh <L zd%. The continuous line refer only to Coampton distor-
tions (eqe (6))e The dot~dashed and the dashed curves include the ef-
fect of bremsstrahlung geq. (7)) in these cases: Tg is equal to iis
equilibrium value (ege (8)) and, Te = 2Tq, Tespectively; also it has
been assumed that z, = 2000, =1 and Ty = 2.9
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At higher frequencies Teq increases becoming equal to Tp at A 152
mm (depending on the actual value of TR). Below Vg, Teq approaches
the electron temperature Te‘ The equilibrium value of Te in the per-
turbed radiation field (7) is

T, = Tp(1 + 5.4 ) (8)

Of course, in the case of direct electron heating Te can be larger
than its equilibrium value.

3. Comparison of the theoretical spectra with the data

The presently available obgervational data are discussed in Dx.
Partridge’s lectures (this volume)e. Let me only mention that one
should be somewhat cautious in dealing with the submillimeter balloon
measurements. In fact, even if the results of the Queen Mary College
group (Robson et al. 1974) and of the Berkeley group {Woody et al.
197%) seem, at the first glance, to be in good agreement, there 1s a
considerable discrepancy between the two groups as to the atmospheric
parameters to be used to compute these results (see eege Clegg 1977)s

Tn order to take into account all the possibilities we decided
to carry out our analysis considering, in turn, only the ground based
measurements (GB set), the GB plus the QMC data (GB + QM set), the GB
plus the Berkeley data (GB + B set) and all the data together. The
"phest” values for the parameters and their ranges permitted by the
datg have been obtained by means of the usual "minimuu1'X2" method
(see e.g. Avni 1976, Cash 1976).

Table 1 gives the "best" values of the temperature and their 16
uncertainties in the case of a BB spectrum.

Table 1. Results for a blackbody spectrum

Set of data T (K) XS nin

GB 2.73 & 0.05 0.50
GB + Q,M 2«81 i 0.04 0.74
GB + B 2494 + 0.03 225
GB + QM + B 2.94 + 0.024 1.77

For the GB measurements Xsmin (= minimum ')(2 divided by the number
of degrees of freedom) is guite small as a consequence Of the fact in



169

some cases the published errors are not standard deviations, but are
somewhat overestimated. It can be noticed that TR increases when the
submillimeter data are included, a fact that could be interpreted as
an indication of some kind of distortions.

Tables 2 and 3 show that, indeed, if we trust the Berkeley data,
there is an evidence for Mo Z 0 at a confidence level &£ 36 and for
u £ 0at alevel > 36, The latter fact was first realized by Field

Table 2. Results for a BE-like spectrum

Set of data "hegt? "hegt" 3Gupp:§ limit 'szmi
T, (X) Mo "
e Aro
8 =1 2473 0 2.4x1072 0.53
¢B 3=0.1 2.73 0 1 x1072 0.53
&=0.03 2.73 0 1 %1072 0.53
A =1 2.84 9 %1072 3.3%1072 0.74
GB+QM 3=0.1 2.81 0 1.6x1072 0.76
O=0.03 2,81 0 1.4x1072 0.76
B =1 2.98 2.4%1072 543x1072 2,11
GB+B & =0.1 2.95 4 x1077 5.1x10™2 2.29
S =0,0% 2.95 1,5%107 2.6%1072 2432
H=1 2,97 2,4%1072 5 %1072 1.7
GB+QM+B &=0.1 2.95 4 %1073 3 x1072 1.8
$=0.03 2,94 1.5%1073 2.4x1072 1.8

Table 3. Results for a "Comptonized™ spectrum (eq. (6))

Set of data "best® | "best" au X2

T (X) w (16) vain
GB 2.73 0 5e6x1072 0.53
GB + QM 2,85 1.7%x10°2 1.3x10™2 0.70
GB + B 2.93 | 2.4x107% | 6.9x107° 1.84
GB + QM + B 2,92 | 2.0x1072 | 6.5x107° 1.55

and Perrenod (1977) who also showed that the allowed values of u are



170

consistent with a "Comptonization" of the CBR spectrum by a dense,
very hot intergalactic gas which could account for the X-ray back-
ground in the range 2~100 keV. This could be indeed an exciting pos-
gibility but it must be noted that the large value of the associated
x%min suggests that the Berkeley group could have underestimated
their errors. OFf course, the larger the true exrrors are, the smallex
is the statistical significance of the distortions.

If the Berkeley data are disregarded any significant evidence
of distortions vanishes and on%\has, at the 3 6 confidence level,
Mg & 1+3 x 10™2 (depending on §2 ) 2pd LI 6 x10°2, The weak depend~
ence of the upper limit of u  on G2 can be somewhat surprising since
the amplitude of the distortions increases as 52—7/8 {eqe {3)). How~
ever an inspection of the data shows that there are very few (and not
very accurate) measurements at A 2 3 cm, where the maximum devia-
tions from a BB spectrum are expected (eqe (4)). In fact no new meas-
urements in RJ region have been carried out in the last ten ysars,
and it is a pity since many valuable pieces of information could . be
hidden in this paxrt of the CBR spectrum.
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A UNIFIED TREATMENT OF DIFFERENT APPROACHES
TO CLUSTERING OF GALAXIES

G. Dautcourt
Institute of Astrophysics, Academy of Sciences, Potsdam~Babelsberg

1. Inbroduction

The large~scale structure of distribution of galaxies following
from optical observations has been studied by a fairly large number
of different methods. The resulting picture turned out to be compli-
cated. Apart from single clusters of galaxies, higher order cluster-
ing was suggested (Abell 1958, 1977, Kalinkov 1974).

Other methods led to the plcture of a continmuous clustering of
galaxies with no preferred scales (Iimber 1953, 1954, Layzer 1956,
Peebles 1975, Peebles and Groth 1975, Peebles and Hauser 1974, Groth
and Peebles 1977, Fry and Peebles 1978, Flin 1977, Rudnicki and Zigbha
1978) . Still open is the question if the observed picture of galaxy
clustering reflects primordial structures (Zeldovich and Novikov 1975,
Gott and Rees 1975, Zeldovich 1978) or arises from gravitational in~
teractions independent of the initial state (Press and Schechter 1974,
Doroshkevich and Zeldovich 1975, Fall and Saslaw 1976, Press and Light-
man 1978, Silk and White 1978).

To compare the different approaches to galaxy clustering, a uni-
fied treatment would be very useful. It seems that the correlation
function method widely used by Peebles and collaborators is able to
provide a link between methods employed so far. There are other prom-
ising aspects of this type of approach: From models of formation of
galaxies and clusters of galaxies one should be able to predict the
parameters describing correlation functions of different order. ILast
not least dynamical problems can be treated by investigating the Liou-
ville equation for the N-point probability distribution function in
phase space, which ig closely related to the correlation functions.

We ghall not treat all these problems but concentrate on the re-
lation between different measures of galaxy clustering. After intro~
ducing the basic notation in section 2, we discuss the fregquency dis-
tribution of cell count, the joint distribution function for galaxy
numbers in arbitrarily spaced cells, the "nearesgst nelghbour" test,
Zwicky s dispersion curve snalysis, some aspects of the statistical
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reduction method invented by the Krakéw group, Turner and Gott s meth-
od to single out isolated galaxies and the usual serial correlation

methods Section 4 discusses observations of galaxy clustering.

2. Statistical description of distribution of galaxies

2e1e TInteracting point particles

The concepts used in recent years (for reviews of earlier re-
sults see Layzer 1959, de Vaucouleuws 1971) to describe a continuous:
clustering of galaxies are closely related to those introduced in the
kinetic theory of interacting point particles (see, e.g., Montgomery
and Tidman, 1964, or Klimontovich, 1964, 1975). One replaces the gal-
axies by point particles of egqual mass m interacting through gravite-
tional forces only. With an application to cosmology in mind one would
like to have a general-relativistic treatment of gravitational inter-
actions. However, most existing formalisms are based on a Hamiltonian
description with the interactions entering explicitly in a action-at-
a~-distance manner. It is difficult to carry over these concepts to
general relativity, where interactions are primarily given implicitly
in terms of field laws. So far only the Klimontovich formalism was
extended for the curved space~time of general relativity. Here we fol-
low an approximate procedure starting from a purely Newtonlan descrip~
tion and adding later the effects of expanslion by introducing comoving
coordinates (Saslaw 1972, Yahil 1976, Fall and Saslaw 1976, Inagaki
1976, Davis and Peebles 1977). This should be a sufficient approxi-
mation provided characteristic distances like the correlation lengths
are all small compared with the Hubble distance.

Congider a gas of N point particlés of equal masses m encloged
in a large box of volume V. Following Gilbexrt (1971), we introduce
the Liouville probability density £(1,2,...N) (denoted as fy in Daut-
court 1977), where £{1,2,+4eN)3{2)00¢+d(N) is the probability to find
particle 1 in a q;1 - neighbourhood of a point with the cartesian co-
ordinates ry and within dl1 of velocity Vs particle 2 in a d;@-neigh-
bourhood of kD) end around h) etce TFor simplicity we have abbreviated
dr,dy, by d(1) (we also use dx; and x, for a(1) and (r;,v;) respective-
1y)e £{1,2,+4.N) is assumed to be symmetric in all arguments and to
give 1 if integrated over the whole phase space:

f(1,2,..‘i,‘..k,‘.oN) = f(1,2,‘.0k,.0‘i,'..N) (2.1)

If(1,2,...N) (1) eeed(N) = 1 (2.2)
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The probability distribution fk(1""k) of coordinates and velocities
of k particles irrespective of the other particles (that is, averaged
over all possible states of the N-k remaining particles) is correspond-
Ingly given by

£,01,2,0000) /7 = (£01,2,000) a(k + 1).00a(m) (2.3)

with k running from 1 to N - 1, (The volume factor is introduced for
normalization).

The meaning of the Liouville probability denglty becomes clear
if a whole ensemble of boxes of equal volumes V but different config-
urations of particles is considered. The quantities of most interest
are ensemble averages. For instance, the phase space particle densi-
ty, defined as a sum of Dirac delta functionss

N
n(x) = > §x - x) (2.4)
i=1
has thé ensemble average
N
aR> =S §lxmxy) £(1,2,00e]) A(1)0ed(W) = ng £(1) (2.5)
i=1

with n = N/V as mean particle density and f.'('l) = f{1) as single par-
ticle function. The ensemble average of the product of particle den~
sities n(x1), n(xz) and n(xs) at different points x4, x,, Xy in phase
space 1s

<n(x1) n(x2)> = nO2 £,(1,2) +ng g(x1-x2) £{1)
<n(x1> n(xz) n(x3)>
+ S(x1-x3) f2(1,2) + S(x2-x3) f2(1,3)] (2.6)

n03 f3(1,2,3) + n02 [g(xf‘xz) f2(2'3)

+ n05(x1-x2) 5(x2-x3) £(1)

We may also correlate the density fluctuations 5n(x1) = n(x,l) -
<n(x1)> at different phase space points:

{Bn(xy)> =0,

{Bnlxy) Snlx)d> =n.? gy(1,2) +ny S(xy-x,) (1),
{Sn(xy) &nlxy) Enlxg)> = n > 85(1,2,3) + n 2 x
«[8(xy=x,) £5(2,3) + Slxq-x3) £5(1,2) + Slxp=x3) €5(1,3)]

+ 1 g(x_‘-xz) 5(x2-x3) £(1).

(2.7)
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The functions gi(1,2,...i) introduced here are called correlation
functions. They may be defined also by

f2(1’2) = £(1) £(2) + g2(1’2)n

f3(112’3) = £(1) £(2) £(3) + £(1) g2(2,3) + £(2) g2(1'3)
+ £(3) 82(292) + g3(1s213>! (2.8)
etce

Note that the phase space integral over any argument of a correlation
function vanishes:

5%1(1,-00k,0¢oi) d(k) = O, (2.9)

The probability distribution function f(1,...N) satisfies a Liouville
equation

N N
of ZE: 3f ZE: of
i= 1,J=1

From (2.10), equations for the time derivatives of correlation func~
tions may be derived. We stop at this point and turn to the problem
of spatial distribtution of galaxies.

2.2. The space and surface distribution of galaxies

If dynamical questions are not considered, we may Iintegrate away
all velocity dependence in fi(1,...i) as well 85 In f(1...N)o In all
of the following formulas it is assumed that this integration has been
carried out. x, or dx1 (or also d(1)) is now taken as abbreviation
for x4 or dx,. Then (2.6) - (2.9) hold also for the velocity inte-
grated terms.

A useful concept is the Mayer cluster expansion of the Liouville
distribution function f. If the galaxies are randomly distributed
with no correlaﬁ}on present, f is separable into a product of f-point
functions VN TT £(1i) (apart from s normalizing factor). When cor-
relations are taken into account, additional terms appear:

R R (1,3
f(1,eeeN) = V° {g (1) + 12;41 g(i,3) g £(k)

> g5(isd,k) 111[ (1,8, £(1) + ...
1£j#k 1=1
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TS gy(1yvesiy_q) £(N) } (2.11)
11£L 00 efly 4
The equation (2.8) may be considered as particular case of the repre-
sentation (2.11) (Note that f;, g; are defined as dimensionless guan-
tities, while f carries a dimension).
Thugs far we have described the space distribution of galaxies.

The projected two-dimensional galaxy distribution on, e.8., 8 photo-
graphic plate can be treated gquite similarly. Using as a rule capltsal
letters for surface guantities, we wrlte

P(1y00eN) dXye0edXy

for the probabllity to find galaxy 1 in a two-dimensional dx1-cell
around X;, galaxy 2 in a dX,-cell around X, etc. 411 equations (2.1)-
(2.9) may bve written as relations for surface quantities by changing
to capital letters and replacing V by 49, the surface of the unit
sphere., We list the most frequently employed equations:

EwN(x,)> =0

Gw(xy) SN(xND> = W6,(1,2) +  WE(E=X,) Fy(1)

EHxy)  5N(x,) § N (ED= W3e401,2,3) (2.12)
+ W2 [60x07%,) 6,01,3) + S(X=Xp) 8,(1,2) + §(XpXz) Gp(1,2)
+ NO(X=%,)  S(X=X5) Fy(1)e

The Mayer cluster expansion for the surface is

N
P(S,eaol) = — ¥, (1) G, (1,k) (£33) 5,(k) +ees
(m)¥ { if:l; (AR ; 2 1:1; LK)+ }

(2.13)
In (2.12), (2.13) ¥ iz the mean number of galaxies per steradian cor-
responding to a given photographic plate. The relation between the
space and surface correlation functions is discussed in section 4.7.

3. Classical measures of galaxy clustering

To determine the correlstion functions of all higher orders di-
rectly from observations is not very practical and requires a lot of
computer time. However, many other measures of the clustering of gal-
axies have been proposed, which are sensitive %o higher—order corre~
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lations and often easier to calculate. In every case one ghould be
able to find the connexion with the correlation functions.

2e1¢ Frequency distribution of cell counts

An often employed measure of galaxy clustering is the observed
frequency distribution of numbers of galaxies in equal cells on the
photographic plate (Hubble 1934, Bok 1943, Abell 1958, Zonn 1968, Flin
et al. 1974, Dodd et ale 1975)., If galexies are clustered one expscts
that the observed number (i) of cells with a very small or very
large population i is higher than the number corresponding to a random
(that is, Poisson) distribution of galaxies. Let (N)> be the mean
number of galaxies per cell, Ntot the total number of galaxies in all
cells, then
{8 1o v

i

\)o(i) = Ntﬂ't (3‘1)

would correspond to a random distribution. The deviation of the actu-
al digtritution from a random one could be measured by the gquantity

N
2
x2 = i@" ( v[1] - v, [1]) (3.2)
(Nmax is the lsrgest number of galaxies In the cells of a given sam~

ple). The probability that a random sample drawn from a Poisson dis-
tribution for a given value of ﬁ(z equal to or exceeding that calcu-
lated from (3.2) is the integral over the ‘xz distribution function
(Abell 1958).

" The obgerved frequency distribution V(i) contains more infor-
mation. We may express the ensemble average of V{i} in terms of
cell moments of the correlation function. The caleculations leading
to this result are typical for the treatment of galaxy clustering given
here, thus we give a short sketch. We want fo calculate the probabil-
ity P(i) that in a square cell L%l = the number of counted gal=-
axies is just i. The probability that the i galaxles numbered by 1
through i out of the total number N (N is the numbexr of galaxies which
could be seen over the whole sky up to the limiting magnitude of the
given plate) are found in the cell, while the remaining galaxies with
mumbers i+1 through N are outside the cell is given by

Pi‘ = S F(‘!"‘.i’i""‘,...y) dx1‘.‘dxidx1+1...dxn'.
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Here the integration with respect to X1 through Xi extends over the
cell, whereas the integration with respect to the remaining variables
extends over the whole sky outside the cell. Since any other collec~
tion of 1 galaxies out of the total population of N galaxies has the
same probability p, to occur, and since there are (g) ways to choose
such a collection, the probability P(i) as defined above is gilven by

P(1) = (}) Bye

For a random distribution of galaxies, F is the product of 1-point
distribution functions f,, apart from a factor 1/(4?7)“. Taking f1=1
(which corresponds to a homogeneous galaxy distribution on the plate),
one obtains, carrying out the integrations and writing P, instead of
P:

B(1) = (:Ig) w Mg - w)¥1 (4 )T,

Since w /4w = N/N, where N is the mean number of galaxies in a cell,
we may also write, using Stirling’s formula

i1 = 2§ We ¥

for large ¥, and letting N —» oo,

i
P (1) = %Z— o <N, (3.5)
This iz the Polsson distribution, as expected. There are correction
terms if the cell 1s so large that 1 <« XN is no longer valid., Usual-
ly, these corrections can be neglected. More important are corrections
arising from the presence of correlations. If the full Mayer cluster
expansion is employed instead of its first term, a similar type of

calculation leads to the expression

N
Po(1) = P (1)(1 + 7 ) (3.6)
1 o ;é; r
with
99 = it z (’1>S<N>S
My = 11 Gpo SZ{; (i~-r+8) 1 (r-s) ts! (3.7

Gro 1s the r-point correlation function Integrated over a cell (Appen~
dix). PFor weak clustering the maximum of P({ ) compared with that of
Po(i) is shifted to smaller values of 1. Also the expected excess of
galaxies with small and large i follows from the formula (3.6} In

Fig. 1 the data from the Jaglellonian field (Rudnicki et al. 1973) are
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fitted to a relation (3.6) with only ?fz taken into account.

0151

014

005

10 5 20

Fig. 1. Prequency distribution of counting cell {715 x 7!5) population
for the Jagiellonian field, together with a Poisson distribution (dots)
corresponding to the same mean galaxy number 5.2 per cell, and a dis-
tribution with only the second-order moment G o = 0.132 (obtained from
the observational data by fitting equation (3.6) with the comstraint
G, = 0 for r > 2) taken into account (dashes)

A better fit of the obgervational data is obtained if higher-order

correlation moments asre considered (Fig, 2). If the clustering is

strong, that is, if the higher order moments G, with r > 2 are of
the same ordexr as GZo’ the picture changese.
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015 : .

20

0

0
Fige 2. Same as Fig. 1, but with cell moments up tg ghg)order 4 in
= 0.04

¥ 1 L]

5

(Gpo = 04174, s = 0.019, G,

the dashed curve

In particular, several maxima are predicted to be present (Pig. 3).
We do not recommend to use this method to determine the cell moments,

since the moments can be found much easier directly from the observa-
However, the plot of the frequency distribution gives

tiongl data.
an immediate Iimpression, what type of clustering (weak or strong) wight

be present.
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FPige 3. Poisson frequency distribution of counting cell population
for a mean number galaxy per cell corresponding to the Jagiellonian
field (dotted) together with a distribution obtained from (3.6) with
Gyy = Gz = G4o = 0.2 (remaining G., taken Zero)

3.2« The joint digtribution function for numbers of gaslaxies in
arbitrarily spaced cells

4 further useful quantity is the joint distribution function of
the cell population, defined as the unconditioned probability

P =P (i, iyeeeiy),
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that any first cell of arbitrary shape contains just i galaxies, a
gecond cell 12 galaxies etc, the k-th cell ik galaxlies. The special
case P1(i) is identical with the distribution function of the cell po-
pulation discussed In the last section. If no clustering is present,
Py is given by the product

i
p, () =ﬁ Q27 - (3.8)

of k¥ Poisson distributions. Again, clustering increases in general
the probability for small as well as for large i. A knowledge of Pk
allows to answer many questions connected with the surface distribu-
tion of galaxies. We note few of them: An inspection of photographic
plates often shows small blank areas where no galaxies are seen up to
the limiting magnitude of the plate. A clustered distribution of gal-
axies produces blank regions with higher probability than a distribu-
tion by chance. But intergalactic absorption clouds may also be pre-
gsent. To declde between these possibilities, it would be lmportant
to kmow the probability that a certain grouping of blank areas (or
perhaps weakly populated areas) arises from the existence of cluster-
ing (for a single blank area equation (3.6) applies). Another exam-
ple: Large-scale clustering may produce variations in the mean den-
sity of galaxies in several parts of a photographic plate. But local
variations of the plate sensitivity may produce similar effects. Again
it is interesting to know the probability that a given excess of gal-
axy numbers way occur already by chance or as a consequence of galaxy
clustering.

The required calculation is a stralightforward generalization of
that given In the last section. We present the results only for the
case k¥ = 2 and for correlation functions up to the third order:

P,(1,k) = P9(1,k) {1+ %Gél) [1% - 21T + 1(1-1)]
+ %Gé? [¥ - 2Kk + ¥(e-1)]+ Ggl’z) [I ¥+ ik - 1 - k ]
368D [-0 4+ 3112 4+ 1(1-1)(1-2) - 31(3-1)T ]
+ 2af2) [ . Zkﬁz + k(¥=1) (k=2) - 31:(1:-1)‘12’] (3.9)
X
‘g 5@%})(1(1) -&332- [-1% + 217% + Ki2 —24kT - 1(1-1)¥
Sr 1 ¢ .(2) S T = =
¥ 1e(i-1) ]+ 4 5G31 (%) =t [-k T + ik2 + 2Tkk - 21K

- k(k-1)71 + 11:?14:-1):] }
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We have written I = Ny, & = NwW, for the mean number of galaxies
in the cells 1 and 2. Furthermore, we distingulsh between the moments
for the two cells (which are different since (w4 # w, in general).
Another notation is
daXx d
1,2) { 1 9%
6,812 = ) G (Kq0%) - .
2

UO1 (%) 032

If the angular distance € between the cell centers is large coupared
with the cell size, then G281'2) ~uwi(6) is a good approximation.

Evidently, if one sums (3.9) over all k one should obtain P1(i).
This may be checked by direct calculation.

3e3« Nearest neighbor test

The distribution of the distances to the first, second etc. neigh-
bor of a galaxy may be used as another measure of galaxy clustering.
Provided galaxy 1 is at the position X,, then the probability distri-
bution function for all other galaxies is given by 4?1‘?(1,...1\1)/?1 in-
stead of F. The probability that the next galaxy is at an angular
distance bvetween € and € + 46 is glven by

D(®) 46 = 497 (¥-1) a8 sin & fa¢ [ P(1,...M)ax,.000xy , (3.10)

where the first integration is over the circumference of the O-circle,
and the other integrations are over the whole sky outside the €~cixrcle.
Working out the integrals with the Mayer cluster expansion for F one
obtains

N
(e = 2 9T sinﬁJV'e-<N> [14-2/0’] (3.11)
r=2 r
with
r - r -1 -1
ID;:- = ﬁz‘?(f—‘l)" Gro <N>r.1 _{_rT%')—’_ Gr1(x1) (3.12)

r-1 -1 T=2p_4yT=2 a
b S (%) +<-IQ(-1.:§T1%—-§’2‘§%G1-2(X1'X2)

where the integrals must be taken over the circumference of the €clre
clee.

In a similar way one may calculste the distribution of the dis-
tances to the second, third etc neighbor of the test galaxy. If the
mean number {N) of galaxies in & ©-circle is small compared with 1,
then approximately D(€) = D (©)(1 + w(8)), where D, is the correspond-
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ing distribution funciion for a randomly distributed sasmple of gal-
axies (cfe (3.11))o Thus, for (N> <« 1, D(®) is larger than Dy
For (N> > 1 the situation is more complicated.

In connexion with the distribution of galasxies, empirical esti~
mates of the function D(6) were discussed by Wagoner (1967), Wagoner
and Bogart (1973), Peebles and Soneira (1977) and by Kalinkov (1978).

3e4e Cell moments of second oxder

The dispersion of numbers of galaxies in square cells, 62 =
= {(¥ - (N>)2> (where ¥ = f\)V’dX is integrated over a cell and
{N> = Nw> the mean number of galaxies in the cell of area wi )
taken as a function of cell size [ = w1 2 gives a measure of gal-
axy clustering which Is easily estimated from the observational data.
With equation (2.12) one obtains

62 = (¥ - <)D= (HY (1- &) + N> gy0( L) (313)

We have included here a factor (1 -~ £,) for the following reason:
The surface two-point correlation function G2(1,2) contains a Dirac
delta funciion term ~ S(X., - X2) resulting from the spread in the
luminosity function of galaxies (section 4.1). The second order cell
moment GZO( L) may be written

Gogl L) = J' ”i‘j ax,dX, =k, w( L) (3.14)

(note w(©) does not contain the delta function term by definition).
In the case of a power law w ~& ° for © <L , the factor k, s in-
dependent of the cell size £ but depends on § (Table 1).

Table 1. Smoothing factors k for a square cell {egquation (3.14)),
for different values of the index & in w(®) ~ s OD=
tained by Monte Carlo Integration

1Y 0.5 0.6 0.7 0.8 0.9 1.0 1.2
k 14583 | 14764 | 1.980 | 2.240| 2.557 | 2.950 | 4.073

Usually the root 3 of the ratio ¢ 2 of the observed dlisper—

sion 6 2 to that expected for a Poisson distribution, 6;2 =(N),1s
plotted as a function of cell size L (see, ce8., Zwicky 1957). Thus,
for a power law w ~ oS
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wl=1- g rkw N LT (3.15)

Provided § <2,  is an increasing function of cell size. This
is also observed in most cases (See, .8+, Fig. 11 in Dautcouxrt 1977,
referring to data from the Jagellonian catalog). Thus the dispersion
curve € ( L) considered as function of cell size gives essentially
the soume information as the correlation function w(9).

3¢5« Parameters connected@ with the statistical reduction method

4 statistical method to investigate the degree and type of gal-
axy clustering was developed by the XKrakéw group (Rudnicki et al. 1973,
Plin et al. 1974, F1in 1974, Zieba 1975, Flin 1977, Rudnicki and Zie-
ba 1978)s The reduction method shares the advantage of othexr measures
of galaexy clustering to condense the structural properties of the gal-
axy distribution into few parameters, here called the index of concen~
tration ¢, of grouping g, and of weak and strong anisotropy. The lat~
ter parameters describe a possibdle anisotropy {directional dependence)
in the distribution of galaxies. They are not accessible within our
framework since we assume statistical homogeneity of the surface ran~
dom processe.

The concentration index ¢ indicates a deficiency or an excess
of highly populated cells compared with the numbers of cells for a
random distribution. In our notation we may write (cf. Plin 1974):

Jr.e)
¢ = 5 L > L-1)B (1), (3.16)
<N> (1 - 1/’)’Z<N>) {=2
where ] is the total number of elementary cells and <N the mean
number of galaxies in a cell. The grouping index may be calculated
from

1 =ZKNy /0 1 SERUENCR” 3.1
E=T-od/N @f (1- 1/ 7 &) i%{ p (1K) (3.17)

g measures - if g > 1 - the temdency for highly populated areas to
gather together (or to avoid each other, if g 1)«

With the formula derived in 3.1 and 3.2 for Py and P,, one 0b~
tains from the definition (3.16) and (3.17) up to (and including) cor-
relations of order r = 4, if 1/20 (N> 1is neglected compared with 1,

the simple result

c =1+ Gy (3.18)
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the excess of the concentration index over 1 is equal to the second
order cell moment. It is likely that the cancellation of terms from
higher~order correlations continues for all orders r >4, but a proof
remains to be given. Similarly one obtains from (2.13) for the group-
ing index, again neglecting terms (N> /7  c¢<N?>/n, 1/(<N>T)
compared to 1, after some calculation
dX1dX2

—_— (3.19)
W2y

g = 1 + SG’2(1,2)
Terms resulting from third order correlations do not occur in (3.19).
Agein one suspects that this also holds for higher-order correlations.
If the cells with areas w4 and w, are separated an angular dis-
tance € large compared with the cell size, one has with a good accura-
cy
g =1+ w8 (3.20)

Thus ~ at least in the case of weak clustering - the concentration in-
dex az well as the grouping index measure well-known quantities. This
agrees with the qualitative descriptions given for these indices. 4
first glance on the data from the Jagellonian catalog shows also nu-
perically order-of-magnitude agreement. However, a detailed compari-
son between the data obtained from the statistical reduction method
and those of the correlation function approach has still to be carried
oute.

3+6¢ Single galaxies

Turner and Gott (1975) have pointed out that the distribution
of galaxies brighter than 14th magnitude in the Zwicky cataloge (Zwicky
et al. 1961-68) shows a remarkable feature. If galaxies with no nelgh-
bor within a circle of radius € (= 45") are correlated with all gal-
axies, the corresponding correlation function ws(eﬁ for "gingles® is
nearly zero for scales & >&; up to & = 15°, Thue the population of
"gingle" galaxies appears to be a well-defined sample of uniformly
distributed galaxies. It was later suggested by Fall et ale (1976)
that the flatness of the two-point correlation function for singles
is probably an artifact of the selection criteria used to define a
Ygingle® galaxy. This means that the existence of isolated galaxies
may not contradict the picture of continuous clustering.

Our approach is well suited to handle problems of thls type.
With Turner and Gott we define the "singles" correlation function
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w,(8) by
= 1' (3021)

where Ps(eo is the probability to find a galaxy of any type (supposed
to be at a sky position X2) at an angular distance © from a single
galaxy (at sky position X1) and ro(eﬁ is the expected probability if
the galaxies are randomly distribvuted. PS(€6 is easily calculated
from (2.13) as

N (- 1)’?}:,1“2
P (69 P (fﬁ { 1 + :E: e [%(r - 1)Gr2(X1,X2) - rN1Gr1(X1)
r=2
- IN,G,(Xy) + N5 ro] } (3.22)

where N, = qre%‘hf is the mean mumber of galaxies in a ©;-circle.
Taking only the two-point correlation function into account, one ob-
tains, if the momen$ G, over a € -circle is replaced by 'Eow(e1),

ws(e) = w(61) [N%Eo/z -2 N1/(2 - S)] + w(8)(1 - N,) (3.23)

Clearly, equation (3.23) 1s not sufficient to explain the data from
the Turner-Gott sample of galaxies at spacings near ¢« 1, since
higher-order correlations are not taken into account. But even with
(3.23), the decrease of the "single-to-total" galaxy correlation func-
tion ws(eb with increasing € (nence increasing N1) found by Soneira
and Peebles (1977) could be understood qualitatively. Ny =1 or & =
= 79" would make ws(ej flat for all €, leaving only the constant first
terme The firet term in (3.23) is always negative, which clearly
shows that higher-order correlations must be considered (the expres-
sions resulting from 3-point correlations also contain a - positive,
constant term).

Z.7. Direct estimates of correlation functions

Most methods charascterizing clustering of galaxies considered
in the previous sections involve correlation functions of all orders.
A clean separation between different orders can easily be obtained.
The probability to find a galaxy in a cell dX2 around X2, provided
there is already a galaxy at X1, is given by



187

where the integration is to be carried out over the whole surface.
Introducing the cluster expansion, it is immediately seen that all
terms with correlation functions Gy, 1 23 drop out, because the in-
tegration of a correlation function over the whole sky glves zero.
Thus we are left with

P dxX, = [1 + G—Z(X“XZ)] ax, . {3.25)

In g similar way we obitain correlation functions of higher owrder. For
example, the probability to find a galaxy in a cell dX, around X2 and
8 galaxy in a dX3 cell around X3, provided there is a galaxy at X1
can be worked out as

P dX,dX, [1 + Gy (X, Xy) + Go(Xy,X5) + Go (X5 4 %)
Ga(x1,x2,x3)j 4X,dX5

since again higher-order terms vanish. Estimates of the probabilities
from empirical data allow to determine the correlation functions. The
most frequently employed method however, uses galaxy counts N =|fdeX
in many cell pairs, separated by a fixed angular distance €,,, to de-
termine two-point correlations, or counts in cell tripels with fixed
angular distances 932, €H3, 9Q3 for three-point correlations. This
allows t0 estimate the left hand side of

(3.26)

+

. dX,dx
(g = a0 ), = <> )y = an>? [ute) —dg = 2we) (3.2m)

directly from observations. Doing this, we implicitly assume that
the surface random process is homogeneous and isotropic (see the Ap-
pendix). Since one obtains from (3.27) only correlation functions
smoothed over & cell area, & problem arises if the cell distances are
comparable with the cell size [+ 4 deconvolution would require to
¥now the counts in cells with sizes smaller than { . However, the
effects are small snd need only to be tsken into account for adjacent
cells. Let us define a smoothing correction factor kg( {) by

w(®) = W(e) /gl L)

Then an easy numerical integration gives the values in Table 2. Note
that kg( L) depends only on § and on the ratio 6/1, if the same
power law applies at all scales & < { (this was assumed for the cal-
culation of Table 2).
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Table 2. Smoothing correction factors kg_&_l.) for square cells 4ixl
for two-point correlations ~ as a function of cell dis=-
tance ©/1 (cell distance in units of cell size) and §

§
o 0,5 0,6 0,7 0,8 0,9 1,0 1,2

1,022 | 1,034 | 1,049 | 1,066 | 1,087 | 1,113 | 1,178
1,005 | 1,007 | 1,010 | 1,014 | 1,017 | 1,021 | 1,031
1,002 | 1,003 | 1,005 | 1,006 | 1,008 | 1,009 | 1,014
1,001 | 1,002 | 1,003 | 1,003 | 1,004 | 1,005 | 1,008
1,001 | 1,001 | 1,001 | 1,002 | 1,003 | 1,003 | 1,005

U RN -

4. The space distribution of galaxies derived from various catalogs

4.1« Connexion between the space and surface density of galaxies

The well-known formula for the number of galaxies, per steradlan,
brighter than a given apparent magnitude m,

*  x%ar n(r) € (M (r])
Moty = T S0+ 5

¢}

, G=(1 +kTr2), (4.1)

where n(x) = ny(1 + z)3 is the space density of galsxies, holds also
for the corresponding fluctuations &n and SN, . Note

M
o (M) = j S(M) dM (4.2)

in (4.1) is the fraction of galaxies with absolute magnitudes brighter
that M. Thus from (4.1) the average < &N 5J‘*f‘2 > of the product
of fluctuations at different sky directions 1 and 2 can be expressed
in terms of the space correlation function (8n; Sn,)>

0 00 9 9
dr,dr, x5 € (M,)e (M,)
SW, W, > = 137 7172 %o 1%
SNy 8N, 2 ££ 6,% 6,° (1+24)°(1+25)°

(Sny Sn,>  (4.3)

{We have assumed as usual that the luminosity function is universal
and that the luminosities are not correlated with the position of gal-
axies). To calculate an expression like (4.3), we use the property
(Sn.z 8n2> to decrease rapidly for large values of the separation
between two space points 1 end 2. Furthermore, one has to take into
account that the coordinates x in (2.4) - (2.10) are local (not co-



189

moving) coordinates, whereas r in (4.1) is the comoving radial coor=
dinate in the Friedman line element

2
ds2 = -at% 4 %Sé;tl (dr2 + r2 ag2 2) (4e4)

Changing the integration coordinates one may rewrite (4+3) in the form
of the second equation in (2.12):

CSNE) SN(EN Y = NZ6,(1,2) + NS(X=Ky) Fi(1)  (4.5)

with

202 % ar(1+z)rt o6\ g S(X,-X,)
Gy(1,2) = MX;O J i ;;)r &.2(m) 2(2(;;0 )- 2 (4.8)
[+]

as the generalized Limber equation (Limber 1953, 1954) Here

[~ »4
Yo = [ ay gt/ + 99 (4.7)
o
is the two-point correlation function projected onto the sky,

A L (4.8)
[+

g =
o

is a measure of the "spread” of the luminogity functions and

9,2 + [q~1] (/T¥2 g 2"~ 1)

P(z) = (4.9)
9,2 (142)2
an abbreviation. For power law two-point correlations, g, = go/r"‘ s
one Obtains
¢, (1,2) = w /6° - —L §(x,-X,) (4.10)
AT N 17 %2 *

with O= oL - 1 and

1 =1 ot 2 Bk
W, = gor\(z) |:( 5—) Wn;—gdr(nz)gs-ic T (4.11)

Provided the general~relativistic corrections can be neglected in

(4411), the two-point correlation functions w, (9) and w, (€) corre-

gponding to plates with different limiting magnitudes n, and m, but

taken for the same angular lag € simply scale as
2 (z, ©)

WZ(G') = f?z wy 2

(4.12)
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(with £ = 1), where 2, and 2, are characteristic redshifts correspond-
ing to the depths of the galaxy samples. For a power law the ampli~
tudes Scale as (z1/22) 6+1 at a given angular separation . However,
{4.12) holds only in the Buclidean approximation and effects resulting
from the expansion and space curvature are neglected. For galaxy sur-
veys extending to magnitudes as faint as those Iin the Shane~Wirtanen
catalog, a general-relativistic correction factor f # 1 must be in-
troduced. The amount of the correction can be minimized, if, instead
of the redshift, some suitable "effective distance®™ is introduced in
(4.12) (Groth and Peebles 1977). Otherwise, fairly large values of f
(of the order ~4 for & limiting redshift of m = 20 mag, cfe Figs 5

in Dautcourt 1977) must be expected. f is mearly independent of the
deceleration parameter 4y but depends to some degree on the luminos-
ity function of galaxies and on the assumed K correction. The effect
should increase the clustering amplitudes of very faint galaxies coum=
pared to those expected in a static Puclidean universe. Surprisingly,
it appears that the observed degree of clustering does not show this
relative increase but behaves like in a Fuclidean universe. 4 possi~
ble interpretation is that the space clustering of galaxies increases
on cosmic time scales (see section 4.2).

442+ Observational data. Interpretation

A number of galaxy catalogs have been used to determine the sur-
face correlation functions from obgservations. Table 3 collects some
of the data obtained for the two-point function, The "limiting mag-
nitudes® are derived from the mean number density of galaxies using
relation (4.1)s The resulting m,, depend on the luminosity function
and on the adopted K correction. We have used two luminosity func-
tions, one in the form given by Peebles and Hauser (1974):

*
8100(M-M) e M"M*}O
oW = a . g0 *(M =M M =M < BN L0
0 cee M LM

with M, = M¥e (1g LPO)/c& , and with the standard values o= 0.75,
F}: 0425, cpo = 0.01 (a2 a normalizing factor). The characteristic
magnitude M* was assumed to be M* = =19%5 + 5 1g h (h, = H /100, H
the Hubble constant in usual units), whereas Peebles has M¥= ~18,6
for ho = 1e
The second luminosity function was Kiang's (1961):

o]



Table 3. Galaxy surveys for estimates of the two~point

correlation function

Galaxy survey and any LI . iangg iange ivglution
] . w 1 n s
field location ares gal/u°(P§§?195 (Kleng’s| ™ o | % (Mpc) |Peebles|Kiang's
) LF LF
Zwicky et al. 1961-67
T > 40°, §»0° | 6000 | .626 | 15™ 15% 14.9 | +2°-30° | 0u4-56 | - -
Shane snd Wirfenen 1967| 7400 | 45 18.7 18.5 | 3.1 [1.32 1°9-10° | 8-80 | 6.6 649
HII > 40

Rudnicki et al. 1973

x=11219",  §=35°351 38 334 | 20.85 20445 | 342 | #4386 | 715-1% | 1.8-14 | 7.6 77
Dautcourt et al. 1978
I, «x=13%34%3, £=30%1 | 9.8 | 590 | 21.5 2141 | 3.2 | 4206 10.2 | 9.8
II. o=13235", §=27% | 9.7 | 801 | 21.9 2144 | 342 | 4154 5°219 | 1.8-p2| 111|104
IIT. o=13240%, §=30%1 | 9.3 | 549 | 21.5 21.0 | 3.2 | 4296 Teb | 746
IV. o=13749", §=27% | 9.8 | 786 | 21.9 21.4 | 3.2 |.286 5.8 | 644
Dodd et al. 1975

«£=2849%3, §$=-32%2 | 1.96 | 1480 | 22.4 22,3 | 1.7 +139 | 252107 1-3.2 | 7.2 | 8.5

164
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a(y-M )3 cee O L MM, K245
o) = (2.5)% 2 100:2(0FU)=05 o5 cwm <8
0 ees remaining values
of M,
here Mo = -21%9 + 5lgh,. For the K coxrection a term linear in g,

X = k1z, was assumed. k1 was calculated by averaging the contribution
from different galaxy types weighted with the space distribution of
typese.

With (4.11) one calculates the space amplitude £, of the two-
point function S(x) given in Table 4. Differences with Peebles arise
wainly from our use of M* = -19.5 in the luminosity function (the most
recent value derived by Peebles and collaborators is h r = 4.6 Mpc
i E= (z/m)1TT).

Table 4. Galaxy number density n, and amplitude ¥{. of the space
two~point coxrelation functlon determined from the Zwicky
catalogs for two luminosity functions

nD(Mpc-a) ?o h,r (Mpc)
Kiang's LF 0.023 60 56
Peebles” IF 0.016 114 8.1

The empirical estimates of the two-point correlation functions
show expected and unexpected features. Pirst, at a given angular
gcale the clustering amplitudes measured by L decreages With increas-
ing depth of the survey, as expected from equation (4.12). Secondly,
as already noted in section 4.1, this decrease of clustering degree
occurs more rapidly than expected, if "no evolution" of the galaxy
distribution takes place. Indeed, if the general-relativistic formu-
la (4.11) is employed, the calculated values w, axe considerably larger
than the observed ones. To make clear what evolutien of galaxy clus-
tering means, let us assume that an astronomer measures the distribu-
tion of galaxlies around himself usipg his local radial coordinate xe
He may find some power law €= & /x™ for the two-point correlation
function. If Eo is independent of the cosmic time t, the astronomer
would speak about "no evolution". Any change in the galaxy distribu-
tion may be represented by Eo = g;(1 + z)”% (with go independent
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of cosmic time), an "evolution index" s > 0 indicating a slow increase
of degree of clustering on cosmic time scales. With respect to a co-
moving radial coordinate r = x(1 + z) we have

B(r) = 5=+ zl“’"'s (4.13)

r

W -values were calculated from (4.11) with (4.13) and with s adjusted
80 that the observed value of w, agrees with the theoretical one. The
resulting s shown in Table %, column 10 and 11, are falrly large.
Large values of s also result from deep galaxy samples discugsed by
Phillipps et al (1978), which are not included in Table 3. Taken at
face value the data would indicate that the clustering amplitudes in-
crease in cosmic timese.

Certain evolution effects in the observed sense should be pre-
sent because the system of galaxies is unstable gravitationally. The
density contrast (gn2> /n2 is ¥nown to increase like ~t4/3=(1+z)-2
in an Binstein-deSitter universe (Zeldovich and Novikov 1975), and the
same increase applies to the correlation function '§(r) for suffi-
ciently large spacings r in the fluid limit of the kinetic equations
{Tnagaki 1976). Thus one expects s = 2 for large r. For smaller r,
particularly if the discrete nature of the interacting galaxies comes
into play, the picture is more complicated (Fall and Saslaw 1976,
Inagaki 1976, Yanil 1976, Davis and Peebles 1977, Press and Lightman
1978, Silk and White 1978). It is not clear, however, if the large
values of 8 found here could be accounted for by gravitational inter-
actlions. There are & number of other effects which tend to produce a
laxge & (Dautcourt and Richter 1978). Errvore in the identificatlion
of galaxies will increase s considerably, On the other hand, ordinary
galactic luminosity evolution should have no essential influence on
the data in Table 3, since the catalogs do not extend to extremely
faint magnitudes. According to Tinsley (1977), however, contamination
of the counts by very bright and highly redshifted young galaxies could
influence the obgerved clusbtering degree. A detailed study of the
galaxy clustering extending to depths now in the range of the Soviet
6 m telescope (Karachentsev and Kopylov 1977) should help to answer
several of these gquestions.

4 further property of the empirical two-point correlation func-
tion is an increase of the slope & at angular distances €+J'fim?295
in the Shane-Wirtanen catalog (Davis et al. 1977, Groth snd Peebles
1977, Dautcourt 1978). One usually assumes that this steepening is
also present in the space correlation function at a linear separation
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of hor*Wz 9 Mpc. However, the observed behaviour of the surface func-
tion w(®) could alsc be produced by a single power law Efo'(6-+1)
with a cutoff at some r > »* 4An interesting interpretation of the
break results from the fact that r ¥ is only slightly larger than Ty
(defined by ;(ro) = 1)+ Hydrodynamically, the scale r  corresponds
10 the transition from the linear treatment of gravitational density
perturbations to the non-linear regime (for r <r ). For r <r, the
density perturbations become rapidly larger compared with the mean
density, and bound systems fragment out of the general distribution
of galaxies. In the kinetic treatment r, gignifies the inset of strong
turbulence with higher-order correlation functions becoming large.
Empirical estimates of the three~point (Groth and Peebles 1977,
Peebles and Groth 1975, Peebles 1975) and four-point (Fry and Peebles
1978) correlation functions (wmainly from the Zwicky and@ Shane-Wirtanen
catalogs) support this plcture. In view of the expected homogeneity
and isotropy of the space random process one may assume that the sur-
face correlation functions G3 and G4 depend only on the mutual angular
distances of three or four points on the sky (see also the Appendix):

Gy = G3(Oy5y Oy39 F5),

(4e14)
G (€5, B30 40y Oy, Oy, O5y) e

Gy
Moreover, the empirical data show that G3 and G4 can be represented
in terms of products of two-point functions:

G

5 = AWpsWys + WygWqp + WyzWyo)

Gy

(4.5

Ra(w12w23w34 + (further 11 terms))

+

Rb(wmwww14 + (further 3 terms)),

where we have used the notation wy, = w(€32) etce Similar eguations
hold for the space functions:

g5 = 4 5p3 g3 + 13 L1z * G253 5120 (4.16)
gy = Tal 512 B3 Z3g * (oym)) + 7 Fyp F13 5qy + (sym))s

where the parameters g, I,, Ty are connected with their surface coun~
terparts Q, Ra’ Rb by integral relations similar to (4.11). Numerical
estimates are given in Table 5. The fact that q, x, and T, axre of or-
der 1 shows that the higher-order correlation functions dominate for
small space separations r with ‘g(r) > 1. In this reglon of "strong
clustering” a representation of the n-point probability distribution
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function £{1,.+.N) in terms of low-order correlation functions (Mayer
cluster expansion, equation (2.11)) appears to be not practical. In-
stead one may turn to other measures of galaxy clustering like those
discussed in section 3.

Table 5. Coefficients for the three~point and four-polint correlation
functions (Q for the Shane~Wirtsnem catalog) (Groth and Peeb-
les 1977, Fry and Peebles 1978)

Q 9 Tq Ty

1.56+0.22 1.29+0.21 2.5+0.6 434142

5 Concluding remarks

The approach given here has considered the correlation functions
as basic physical quantities. In view of the physical processes In-
volved in the formation of galaxies and clusters of galaxies this might
not necessarily be the best starting point. One should remember the
theory of galaxy distribution developed by J. Neyman, E.L. Scott and
their collaborators (Neyman et al. 1956) where the exlstence of clus~
ters in space with randomly distributed centers and with definite
structure properties was the basic assumption. This model gives rise
to a well-defined sequence of two-point, three-point and highex order
correlation functions, which could be calculated using, e.g., a method
recently elaborated by McClelland and Silk (1977 a,b). If one consid-
ers models for the formation of galaxles such as the model of adiabatic
perturbations developing into "pancakes" by nonlinear interactions ar-
ranged in a kind of honeycomb structure (Zeldovich 1978), also specific
correlation functions for the galaxy distribution must be expected.

If, on the other hand, galaxy clustering builds up from small units

. (Press and Schechter, 1974) the resulting properties of the galaxy cor-
relation function are expected to be quite different. In principle,
this could allow us %o distinguish between different models of the or-
igin of galaxies and galaxy clusters.

Appendix: Notation for cell moments

A surface correlation function Gr is usually written Gr(X1"'Xr)
ag a function of the arguments, where X1 denote the two angular coor-
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dinates at the sky. If no misunderstanding is possible we simply
write Gr(1,...r). Partial integration over a cell with respect to
some coordinates-1s denoted by

dY1...dYr_i
Gri(x1,X2..cXi) = —"—“Tf:’{—-c'r(x"to.xi, Y1...Yr-i)‘ (A 1)

This includes for i = 0 the cell moment of r-th ordex:

G =

dY1 ‘..dY
o=

oor = Gr(x1"‘xz) (4 2)

To distinguish cells of different shape ox size, we may write ng),
Grg etce In some cases, where the integration is not taken over the

same cell, we use a simillar notation, for instance
dX1dX2

w1w

6fr?) = f S Gy (X42%p) .

GOy W3y

(4 3)

where (01 # P

The notations (4 1) - (4 3) apply to the general case where no
symmetry property for the correlation functions was assumed. If We
assume homogeneity and isotropy for the surface random process, it
follows that Fy = 1, G2(X1,X2) (in genersl a function of four inde-
pendent arguments) depends only on the angular distance €y, between
the two points X, and X,, G3(X1,X2,X3) depends only on the angular
distances~e12, 633, 6é3 between the three points X1, X2 and X3 etce
This simplification was used in (4.6 ~ 4.7).
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QUESTIONS TO INFALLIBLE ORACLE

M. Heller

1. Introduction: purely terminological guestion

Within the set of all spatially-homogeneous solutions of Ein-
stein’s field equations there is a zero-measure sub-set of solutions
which are both spatially-homogenecous and isotropic, and which are
called Friedman, Lemaitre, Robertson~Walker, and all possible combi-
nations of these names (with the restriction that Robertson and Walker
almost always go together), cosmological models. Works of Robertson
and Walker are chronologically later and deal rather with symmetric
spaces from the purely mathematical point of view than with the rela-
tivistic world models. It remains, however, the gquestion of prioxity
as far as contributions of Friedman and Lemaitre are concerned. Be-
longing to the zero-measure set of people who have read both cosmolo-
gical papers of Priedman and almost all papers of Lemaitre (who is the
author of more than one hundred papers); I shall deal with this ques-
tion,.

In the Imstitute of Geophysics and Astronomy (bearing now the
name of Georges Lemaatre) at the Catholic University of Louvain (now:
Louvain-la-Neuve) there is an archive of papers, notes, letters, etc.
left by Lemaitre, who was there a professor all his scientific life.
During my two six months visits in Louvain-la-Neuve I spent many hours,
together with Professox Odon Godart, former assistant of Lemaﬁtre, in
close contact with Lemaitre’s papers. 1 will present here some of our
findings, throwing a beam of light omto the early history of the rela-
tivistic cosmology.

2e¢ The works of Friedman

Before fundamental works of Priedman and Lemaltre, two cosmolo-
gical models were known: original Einstein’s model (1917) containing
uniformly distributed dust-like matter, and de Sitter’s model (1917)
containing no matter. Both models were believed to be static. It was
Lemaltre (1925) who - Dby introducing a suitable coordinates -~ has dis-
covered stationary (but non-static) character of the de Sitter solu-
tion.

Two Friedman’s works {1922, 1924) chronologically preceded those
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of Lemaitre. However, both articles of Friedman, although publighed
in the German journal "Zeitschrift f#r Fhysik", remained unknown for
a long time to the widex scientific public.

The first Friedman’s work, entitled “ﬁber die Krf#mmung des Raumes”
appeared in 1922, At the beginning the author carefully enumerates all
assumptions necessary to construct a cosmological model. He retains
two Binstein’s postulates: the cosmological constant and a constant,
positive curvature of space; he abandons, however, Einstein’s presup-
position that the universe has to be statice This leads immediately
to the so-called to-day Friedman’s equations (with k = +1), governing
the overall evolution of the universe. ZEvolution is admitted by Pried-
man as a mathematical possibility. The author gives explicitly the rea-
gon for such a restriction: this is because of lack of empirical data
"which could give any estimates and provide an answer to the gquestion
which space-time corresponds to our universe".

‘ The work of Friedman is mathematically very elegant. It gives
the full discussion of all possible solutions (without, however, writ-
ing them down explicitly), within the considered class of models.

Thigs discussion was afterwards repeated in the famous monograph by
Tolman (1934), and often mistakenly attributed to Robexrtson (1933).

The second work of Friedman, which appeared in 1924, is entitled
"ﬁber die MBglichkeit einer Welt mit konstanter negativer Krilmmung des
Raumes". The "Priedman equation is deduced for the case of constant,
negative curvature of space, and the proof is given that this equation
admits non-stationary solutione with positive matter density (without
giving their discussion as in the first papexr) .

Motivation of the second paper is more philosophical. Friedman
wants to contribute to the old problem of whether the univerge is spa-
tially finite or infinite. He treats this problem in & very modern
style, showing that the answer depends not only on the field equations
themselves but also on the assumed global topology of space-time,

{For the recent treatment of this problem ses the begutiful paper by
Ellis (1971)).

Tt is rather curious that Friedman did not consider the class
of world models with the vanishing spatisl curvature. This neglect
wag afterwards made up by Robextson (1933).

After the first work of Friedman, Einstein (1922) published a
short note claiming to find an erroxr in Friedman’s computations. In
the second note (1924), which was an answer to a private letter of
Friedman, he admitted that it was himself who comitted an error. Ein-
stein did not like an idea of the expanding universe. He fully appre-
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ciated the value of Priedman’s work in 1931, six years after the death
of the Russian cosmologist.

3« The universe of increasing radius

The fundamental work of Lemaitre was publighed in 1927, in a lo=
cal Belgian journal "Annales de la Sociéte Scientifique de Bruxelles",
and glso remained unnoticed by broad scientific publice. Eddington,
working on the problem of instability of Einstein’s static model, came
across the Lemaitre paper, appreciated its value, and found in it (im-
plicite) the solution of his own problem. ZIater on, Eddington managed
to publish the English translation of Lemaltre’s work in the "Monthly
Notices of the Royal Astronomical Soclebty"” (1931).

The idea of the solution came to Lemaitre when listening to
Hubble’s lecture in United States (private information from Professor
Godart), and from the beginning this idea was strictly comnected with
observational investigations of the universe. Therefore the title of
Lemaftre's paper "A Homogeneous Universe of Constant Mass and Increas-
ing Radius Accounting for the Radial Velocity of Extra-galactic Nebulae"
is significant,

Temaltre’s intention was to find a model intermediate between
Einstein static universe and empty de Sitter world. After the work
on new coordinates for the de Sitter universe, he knew that the model
looked for has to be non-stationary, "with increasing radius". This
led Lemaitre to the Priedman equation for the constant positive space
curvature. Wanting to have something between Eingtein and de Sitter
models, Lemaftre adjusted constants of integration to their values in
Einstein’s static universe, and obtained rather special solution, known
afterwards under the name of Eddington-Lemaitre world model, that de-
scribes the expanding universe with non-vanishing matter density, which
- as time goes to minus infinity - approaches asymptotically the static
Einstein universe.

Priedman’s equation in Lemaftre's paper incorporates a term cor-
responding to pressure of matter, however, if model is compared with
astronomical observations, Lemaltre puts this term equal zero. The
aim of Lemaftre 1s to study the real universe and not a mathematical
structure of the Friedman equation. PFor this reason he does not con-
sider other possible solutions, which - in his opinion - provide too
short time scale as compared to that of stellar evolution (the minimum
of the radius R "would genexrally occur at time of the order of Ro’ s8y
109 years — i.e. quite recently for stellar evolution"). Temaitre de-
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Pig. 1. Original drawing of Lemaltre showing all possible solutions of Friedman eruations with cone
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rives from his model the formula for the Doppler effect, for the case
"when the light source is near enough'" he obtains the "Hubble law"
{which was published by Hubble two years later), and compares it with
the 43 red-shift measurements made by Str8mberg and 42 made by Hubble
himself. The general conclusion is: "The receding velocities of extra-
galactic nebulae are a cosmic effect of the expansion of the universe's

In Lemaitre’s archive in Louvain-la-Neuve, we have found a red
pad with the inscription "1927", containing: the proofs of Lemaitre’s
1927 paper, some notes in handwriting connected with this paper, and
two diagrams (see Fige. 1 and 2) presenting all possible solutions for
the case of constant positive space curvature with the solution adopted
by Lemaitre distinguished with the daghed line. This is interesting
from the historical point of view, since people believe that Lemaitre
learned about the exlstance of other solutions much later (about 1931).
If we remember that Priedman gave only the qualitative discussion of
the solutions, it is highly probable that Figse 1 and 2 present, for
the first time in the history, time evolution of "closed universes",
reproduced afterwards almost in every textbook of cosmologye.

4. Quantum cosmology

Lema?tre was not happy with his results. On the other hand,
Eddington who wrote that "the notion of a beginning of the present or-
der of Nature 1s repugnant to me", widely propagated Iemaltre’s model
with minus time infinity. The quoted sentence of Eddington comes from
his presidential address to the Mathematical Association, published in
Nature and entitled: "The End of the Woxrld: from the Standpoint of
Mathematical Fhysics" (1931)e About three weeks later (!) in the same
journal a short note of Lemaltre appeared, which clearly was inspired
by Eddington’s address. Lemaitre’s note bears the title: "The Begin-
ning of the World from the Point of View of Quantum Theory™ (1931)

This is a very short note, and I shall quote its larger parts:

1Sir Arthur Eddington states that, philosophically, the notion

of a beginning of the present order of Nature is repugnant to

him. T would rather be inclined to think that the present state

of gquantum theory suggests a beginning of the world very differ-
ent from the present order of Nature. Thermodynamical principles
from the point of view of guantum theory may be stated as fol-
lows: (1) Energy of constant total amount is distributed in dis-
crete quanta. (2) The number of distinet quanta is ever Increas-
ing. If we go back in the course of time we must find fewer and
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fewer quanta, until we find all the energy of the universe packed
in a few or even in a unique guantum.

Now, in a atomic processes, the notion of space and time
are no more than statistical notions; they fade out when applied
to individual phenomena involving but a small number of guanta.
If the world has begun with a single quantum, the notions of
space and time would sgltogether fail to have any meaning at the
beginming; they would only begin to have & gensitle meaning when
the original quantum had been divided into a sufficient number
of quanta. (ees)

Cleariy the initial guantum could not conceal in itself
the whole course of evolution; but according to the principle
of indeterminacy, that is not necessary. Our world is now un-
derstood t0 be a world where something really happens; the whole
story of the world need not have been written down in the first
quantum like a song on the disc of a phonographe. The whole mat-
ter of the world wust have been present at the beginning, but
the story it has to tell may be written step by step.”

These are the beginnings of the so-called Primeval Atom Hypothe~
sis. The guantum considerations should be regarded as its first source.

5. Initial singularity

The second source of the Primeval Atom Hypothesls were Lemaltre’s
considerations on the problem of the initial singulaxity. Levaltre
discussed this problem with Einstein who did not like the ides of a
"beginning", Hoping that the initial singularity appears as a "by-
~product? of the symmetry assumptions, Einstein suggested to Lemaitre
t0 consider a simple anisotropic metric (called today Bianchi I).
Lemaltre (1933) easily wrote down the corresponding field equations,
and ~ using an equality which essentially is the so~called energy dom-
inance condition of the contemporary Hawking-Penrose singularity the-
orems - succeeded to demonstrate that in this particular case the sin-
gularity is presente.

Lemaftre emphasises that this is not a formal proof, that the
singularity cannot be removed by introducing anisotropy (because the
considered metric is not the most general possible) but nevertheless
it does suggest that even in the more general case the anisotropy is
not an effective mechanism for removing singularities because "it acts
in an opposite direction',

A simple physical consequence of the inevitability of the ini-
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tial singularity is the fact that -~ if we go back in time -~ matter
"should have higher and higher temperature, much higher than the crit-
ical temperature of fluids, and nothing prevents it to reach the de-
gree of compression comparable to the interior of Sirius’ companion'".

In this way the concept of the initial singularity is a geomet-
ric support of the physical idea of the Primeval Atom.

6« Further developments: the background radiation

The Primeval Atom Hypothesis consists of further developments
of the above premisses. The idea was improved and evolved in many
works of Lemaitre. We cannot go here into details. Instead, we shall
quote a longer passage from one of Temaitre’s later papers:
"The physical beginning which fits the solution of Friedman’s
equation starting from R = O is provided by the Primeval Atom
Hypothesis.

Here the word "Atom" should be understood in the primitive
Greek sense of the word. It is intended to mean absolute sim-
plicity, excluding any multiplicity. The Atom is so simple that
nothing can be said about it and no question raised. If provides
a beginning which is entirely inaccessible.

Tt is only when it has split up into a large numbexr of
fragments by filling up a space of small, but non strictly zexo
radius, that physical notions begin to agquire some meaning.

The first guestion which has to be considered is whether
the resulting assembly of particles has to be described as a
gase

If one gives an affirmative answer to this question, one
has to face the difficulty of understanding how such a gas,
which presumably filled up an expanding space, has to be able,
later on, to divide itself into separate nebulae.

To be more precise, we muct make clear what has to be con-
sidered as characterizing a gas. It is not enough to have an
assembly of & large number of particles. In oxder to be called
a gas, such an assembly must have velocities with a distribution
that is strongly concentrated around a mean velocity, the veloc-
ity of the gas, and distributed around this velocity according
to a law not too different from the Maxwelliamn distribution which
is realized in ordinaxry gases.

On the other hand, a mere assembly of particles with ve-
locities spreading in every direction with speeds of the same
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order of magnitude could not be considered as a gase. It should

be described as an asgsembly of corpuscular rays, as corpuscular

radiation.
It is true that, by cellisions, such radiation would fi-
nally reach a state of statistical eguilibrium snd become a gas.

But in the extreme condition of expansion, starting (theoreti-

cally) with infinite velocity, it is not likely that such a

statistical equilibrium would have had time to establish itself.

From that point of view, the problem which cosmology has
to face is to understand how gas would finally arise from the
primeval radiation and then organize itself into nebulae and sec~
ondly to understand what would arise from the part of this pri-
meval radistion which would have egcaped condensation into gases.

The smecond point gives an interpretation of the observed
cogmic radiation, which may, of course, be only a partial one.

In discussing this aspect of the theory, one must take into ac-

count for the rays the reduction of intensity due to the expan-

sjon, This phenomenon, guite analogous to the red shift of

light, reduces the intensity of the rays in proportion to 1/R.

The total intensity of the cosmic rays is about 1/10 000 of the

total energy of matter condensed Iin the stars. This means that

cosmic rays and matter would have been of the same order of mag-
nitude when the radius was only one ten-thousandth of its pre-

sent value." (Lemaltre (1958)).

Here we have, if not a simplified version of a contemporary
standard model of the universe, at least a clearly formulated programme
for such a model. With one exception: cosmic rays - Lemaitre’s candi-
date for the relic primeval radiation should be replaced by the micro-
wave background radiation discovered in 1965. Two weeks before his
death Lemailtre learned about this discovery {private communication of
0. Godart) and was happy that his bypothesis has acquired an experi-
mental supporte.

T Instead of conclusions

From the contemporary perspective we may look on Lemaftre’s work
8s on the initiation of the "physical cosmology" (not only a geomet-
rical frame for the structure-evolution of the universe, as it was in
earlier cosmological investigations). However, during his life Te~
maltre met sometimes scepticism and even ironical atmosphere.

Among letters of Lemaftre we have found the following post card,
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Pig. 3. Copy of a post card send to Lemaitre from Cambridge on April
17=-th, 1934. (Courtesy of Professor Odon Godart ).
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mailed to him from Cambridge: "Cambridge, 17+4.,1934+ ~ Congratulations
from the club on the remuneration creation of the universe." Among
eleven signatures there are names of P. XKapitza, Pe.A.M. Dirac, M. Born.
After Lemaitre’s death Dirac (1968) wrote a beautiful review article
about Lemaitre’s contributions to the modern science in which he calls
Lemaitre the greatest cosmologist of our times.

In 1931 the British Association organized discussion on "the
guestion of the relation of the physical universe to0 life and mind".
Contributions to this discussion (by J. Jeans, G. Lemaitre, W. de Sit-
ter, A. Eddington, R.A. Millikaen, E.A. Milne, General J.C. Smuts,
Bishop E.W. Barmes, and 0. Iodge), under the common title "The Evolu~
tion of the Universe", from a Supplement to Nature (October 24, 1931).
Even now this discussion is very interesting to read. To-day we know
more "cosmic mechanisms® and technicalities about the universe but we
are not much closer to the most fundamental answers.

At the end of his contribution Sir James Jeans said:

"Syppose some infallible oracle affered to give a "Yes" or "No¥

angwey 1o two scientific gquestions for each of us. Fersonally,

I think I might choose as my two questions:

1. Does the main energy of stellar radiation come from the
annihilation of mattexr?
2., Ia the universe expanding at about the rate indicated
by the spectra of thé nebulag?
Lemaitre was a second speaker, he assumed Jeans”’ style:

"If I had to ask a quegtion of the infallible oracle alluded to

by Sir James Jeans, I think I should choose this: "Has the uni-

verse ever been at rest, or did the expansion start from the
beginning?" But, I think, I would ask the oracle not to give
the answer, in order that a subsequent generation would not be
deprived of the pleasure of searching for and of finding the so-
lution.”

Owing to Iemaitre’s generosity we can investigate to-day mys-
teries of the universe and leave many unansgwered guestions for future
generations.
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